Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Prof
University of Ljubljana
Showing your local timezone
Schedule
Monday, December 13, 2021
3:00 PM Europe/London
Recording provided by the organiser.
Domain
NeuroscienceHost
Sussex Visions
Duration
70 minutes
In many butterflies, the ancestral trichromatic insect colour vision, based on UV-, blue- and green-sensitive photoreceptors, is extended with red-sensitive cells. Physiological evidence for red receptors has been missing in nymphalid butterflies, although some species can discriminate red hues well. In eight species from genera Archaeoprepona, Argynnis, Charaxes, Danaus, Melitaea, Morpho, Heliconius and Speyeria, we found a novel class of green-sensitive photoreceptors that have hyperpolarizing responses to stimulation with red light. These green-positive, red-negative (G+R–) cells are allocated to positions R1/2, normally occupied by UV and blue-sensitive cells. Spectral sensitivity, polarization sensitivity and temporal dynamics suggest that the red opponent units (R–) are the basal photoreceptors R9, interacting with R1/2 in the same ommatidia via direct inhibitory synapses. We found the G+R– cells exclusively in butterflies with red-shining ommatidia, which contain longitudinal screening pigments. The implementation of the red colour channel with R9 is different from pierid and papilionid butterflies, where cells R5–8 are the red receptors. The nymphalid red-green opponent channel and the potential for tetrachromacy seem to have been switched on several times during evolution, balancing between the cost of neural processing and the value of extended colour information.
Gregor Belušič
Prof
University of Ljubljana
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow