Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Pitch and Time Interact in Auditory Perception

Jesse Pazdera

McMaster University, Canada

Schedule
Wednesday, October 26, 2022

Showing your local timezone

Schedule

Wednesday, October 26, 2022

12:00 AM America/New_York

Watch recording
Host: Timing Research Forum

Watch the seminar

Recording provided by the organiser.

Event Information

Domain

Neuroscience

Original Event

View source

Host

Timing Research Forum

Duration

70 minutes

Abstract

Research into pitch perception and time perception has typically treated the two as independent processes. However, previous studies of music and speech perception have suggested that pitch and timing information may be processed in an integrated manner, such that the pitch of an auditory stimulus can influence a person’s perception, expectation, and memory of its duration and tempo. Typically, higher-pitched sounds are perceived as faster and longer in duration than lower-pitched sounds with identical timing. We conducted a series of experiments to better understand the limits of this pitch-time integrality. Across several experiments, we tested whether the higher-equals-faster illusion generalizes across the broader frequency range of human hearing by asking participants to compare the tempo of a repeating tone played in one of six octaves to a metronomic standard. When participants heard tones from all six octaves, we consistently found an inverted U-shaped effect of the tone’s pitch height, such that perceived tempo peaked between A4 (440 Hz) and A5 (880 Hz) and decreased at lower and higher octaves. However, we found that the decrease in perceived tempo at extremely high octaves could be abolished by exposing participants to high-pitched tones only, suggesting that pitch-induced timing biases are context sensitive. We additionally tested how the timing of an auditory stimulus influences the perception of its pitch, using a pitch discrimination task in which probe tones occurred early, late, or on the beat within a rhythmic context. Probe timing strongly biased participants to rate later tones as lower in pitch than earlier tones. Together, these results suggest that pitch and time exert a bidirectional influence on one another, providing evidence for integrated processing of pitch and timing information in auditory perception. Identifying the mechanisms behind this pitch-time interaction will be critical for integrating current models of pitch and tempo processing.

Topics

a4a5auditory stimulushigher-equals-faster illusionpitch discriminationpitch perceptionrhythmic contexttempotime perception

About the Speaker

Jesse Pazdera

McMaster University, Canada

Contact & Resources

Personal Website

github.com/jpazdera

Related Seminars

Seminar60%

Knight ADRC Seminar

neuro

Jan 20, 2025
Washington University in St. Louis, Neurology
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
January 2026
Full calendar →