Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
FIAS Frankfurt Institute for Advanced Studies
Showing your local timezone
Schedule
Wednesday, February 11, 2026
4:30 PM Europe/Berlin
Domain
NeuroscienceHost
LOOPS de Hoz - Hechavarria
Duration
70 minutes
Current machine learning systems consume vastly more energy than biological brains. Neuromorphic systems aim to overcome this difference by mimicking the brain’s information coding via discrete voltage spikes. However, it remains unclear how both artificial and natural networks of spiking neurons can learn energy-efficient information processing strategies. Here we propose Predictive Coding Light (PCL), a recurrent hierarchical spiking neural network for unsupervised representation learning. In contrast to previous predictive coding approaches, PCL does not transmit prediction errors to higher processing stages. Instead, it suppresses the most predictable spikes and transmits a compressed representation of the input. Using only biologically plausible spike-timing based learning rules, PCL reproduces a wealth of findings on information processing in visual cortex and permits strong performance in downstream classification tasks. Overall, PCL offers a new approach to predictive coding and its implementation in natural and artificial spiking neural networks
Prof. Dr. Jochen Triesch
FIAS Frankfurt Institute for Advanced Studies
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow