World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
University of Cape Town
Showing your local timezone
Schedule
Tuesday, August 25, 2020
5:30 PM Africa/Johannesburg
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
NERV
Seminar location
No geocoded details are available for this content yet.
Cases with visuospatial abnormalities provide opportunities for understanding the underlying cognitive mechanisms. Three cases of visual mirror-reversal have been reported: AH (McCloskey, 2009), TM (McCloskey, Valtonen, & Sherman, 2006) and PR (Pflugshaupt et al., 2007). This research reports a fourth case, BS -- with focal occipital cortical dysgenesis -- who displays highly unusual visuospatial abnormalities. They initially produced mirror reversal errors similar to those of AH, who -- like the patient in question -- showed a selective developmental deficit. Extensive examination of BS revealed phenomena such as: mirror reversal errors (sometimes affecting only parts of the visual fields) in both horizontal and vertical planes; subjective representation of visual objects and words in distinct left and right visual fields; subjective duplication of objects of visual attention (not due to diplopia); uncertainty regarding the canonical upright orientation of everyday objects; mirror reversals during saccadic eye movements on oculomotor tasks; and failure to integrate visual with other sensory inputs (e.g., they feel themself moving backwards when visual information shows they are moving forward). Fewer errors are produced under conditions of certain visual variables. These and other findings have led the researchers to conclude that BS draws upon a subjective representation of visual space that is structured phenomenally much as it is anatomically in early visual cortex (i.e., rotated through 180 degrees, split into left and right fields, etc.). Despite this, BS functions remarkably well in their everyday life, apparently due to extensive compensatory mechanisms deployed at higher (executive) processing levels beyond the visual modality.
Aimee Dollman
University of Cape Town
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe