Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Rare Visuospatial Disorder

Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

A Rare Visuospatial Disorder

Aimee Dollman

University of Cape Town

Schedule
Tuesday, August 25, 2020

Showing your local timezone

Schedule

Tuesday, August 25, 2020

5:30 PM Africa/Johannesburg

Watch recording
Host: NERV

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Watch the seminar

Your browser does not support the video tag.

Recording provided by the organiser.

Event Information

Format

Recorded Seminar

Recording

Available

Host

NERV

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

Cases with visuospatial abnormalities provide opportunities for understanding the underlying cognitive mechanisms. Three cases of visual mirror-reversal have been reported: AH (McCloskey, 2009), TM (McCloskey, Valtonen, & Sherman, 2006) and PR (Pflugshaupt et al., 2007). This research reports a fourth case, BS -- with focal occipital cortical dysgenesis -- who displays highly unusual visuospatial abnormalities. They initially produced mirror reversal errors similar to those of AH, who -- like the patient in question -- showed a selective developmental deficit. Extensive examination of BS revealed phenomena such as: mirror reversal errors (sometimes affecting only parts of the visual fields) in both horizontal and vertical planes; subjective representation of visual objects and words in distinct left and right visual fields; subjective duplication of objects of visual attention (not due to diplopia); uncertainty regarding the canonical upright orientation of everyday objects; mirror reversals during saccadic eye movements on oculomotor tasks; and failure to integrate visual with other sensory inputs (e.g., they feel themself moving backwards when visual information shows they are moving forward). Fewer errors are produced under conditions of certain visual variables. These and other findings have led the researchers to conclude that BS draws upon a subjective representation of visual space that is structured phenomenally much as it is anatomically in early visual cortex (i.e., rotated through 180 degrees, split into left and right fields, etc.). Despite this, BS functions remarkably well in their everyday life, apparently due to extensive compensatory mechanisms deployed at higher (executive) processing levels beyond the visual modality.

Topics

cognitionmirror reversaloccipital cortical dysgenesisorientationpredictive codingsaccadic eye movementssensory integrationsubjective representationvisual attentionvisual fieldsvisual systemsvisuospatial cognitionvisuospatial disorder

About the Speaker

Aimee Dollman

University of Cape Town

Contact & Resources

No additional contact information available

Related Seminars

Seminar64% match - Relevant

Continuous guidance of human goal-directed movements

neuro

Dec 9, 2024
VU University Amsterdam
Seminar64% match - Relevant

Rett syndrome, MECP2 and therapeutic strategies

neuro

The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t

Dec 10, 2024
Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, USA
Seminar64% match - Relevant

Genetic and epigenetic underpinnings of neurodegenerative disorders

neuro

Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe

Dec 10, 2024
MIT Department of Biology
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights