Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Rolls lab, Technion - Israel Institute of Technology
Showing your local timezone
Schedule
Wednesday, March 30, 2022
7:00 PM Europe/Berlin
Recording provided by the organiser.
Domain
Host
WWNeuRise
Duration
35 minutes
Accumulating data indicate that the brain can affect immunity, as evidenced, for example, by the effects of stress, stroke, and reward system activity on the peripheral immune system. However, our understanding of this neuroimmune interaction is still limited. Importantly, we do not know how the brain evaluates and represents the state of the immune system. In this talk, I will present our latest study from our lab, designed to test the existence of immune-related information in the brain and determine its relevance to immune regulation. We hypothesized that the InsCtx, specifically the posterior InsCtx (as a primary cortical site of interoception in the brain), is especially suited to contain such a representation of the immune system. Using activity-dependent cell labeling in mice (FosTRAP), we captured neuronal ensembles in the InsCtx that were active under two different inflammatory conditions (dextran sulfate sodium [DSS]-induced colitis and zymosan-induced peritonitis). Chemogenetic reactivation of these neuronal ensembles was sufficient to broadly retrieve the inflammatory state under which these neurons were captured. Moreover, using retrograde neuronal tracing, we found an anatomical efferent pathway linking these InsCtx neurons to the inflamed peripheral sites. Taken together, we show that the brain can store and retrieve specific immune responses, extending the classical concept of immunological memory to neuronal representations of inflammatory information.
Tamar Koren
Rolls lab, Technion - Israel Institute of Technology
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow