Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Aarhus University
Showing your local timezone
Schedule
Wednesday, July 29, 2020
2:30 PM Europe/London
Domain
NeuroscienceHost
Transatlantic Systems Neuro
Duration
70 minutes
Understanding what drives foraging decisions in animals requires careful manipulation of the value of available options while monitoring animal choices. Value-based decision-making tasks, in combination with formal learning models, have provided both an experimental and theoretical framework to study foraging decisions in lab settings. While these approaches were successfully used in the past to understand what drives choices in mammals, very little work has been done on fruit flies. This is even though fruit flies have served as a model organism for many complex behavioural paradigms. To fill this gap we developed a single-animal, trial-based decision-making task, where freely walking flies experienced optogenetic sugar-receptor neuron stimulation. We controlled the value of available options by manipulating the probabilities of optogenetic stimulation. We show that flies integrate a reward history of chosen options and forget value of unchosen options. We further discover that flies assign higher values to rewards experienced early in the behavioural session, consistent with formal reinforcement learning models. Finally, we show that the probabilistic rewards affect walking trajectories of flies, suggesting that accumulated value is controlling the navigation vector of flies in a graded fashion. These findings establish the fruit fly as a model organism to explore the genetic and circuit basis of value-based decisions.
Duda Kvitsiani
Aarhus University
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow