Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

A robust neural integrator based on the interactions of three time scales

Bard Ermentrout

University of Pittsburgh

Schedule
Wednesday, November 11, 2020

Showing your local timezone

Schedule

Wednesday, November 11, 2020

12:00 AM America/New_York

Watch recording
Host: van Vreeswijk TNS

Watch the seminar

Recording provided by the organiser.

Event Information

Domain

Neuroscience

Original Event

View source

Host

van Vreeswijk TNS

Duration

70 minutes

Abstract

Neural integrators are circuits that are able to code analog information such as spatial location or amplitude. Storing amplitude requires the network to have a large number of attractors. In classic models with recurrent excitation, such networks require very careful tuning to behave as integrators and are not robust to small mistuning of the recurrent weights. In this talk, I introduce a circuit with recurrent connectivity that is subjected to a slow subthreshold oscillation (such as the theta rhythm in the hippocampus). I show that such a network can robustly maintain many discrete attracting states. Furthermore, the firing rates of the neurons in these attracting states are much closer to those seen in recordings of animals. I show the mechanism for this can be explained by the instability regions of the Mathieu equation. I then extend the model in various ways and, for example, show that in a spatially distributed network, it is possible to code location and amplitude simultaneously. I show that the resulting mean field equations are equivalent to a certain discontinuous differential equation.

Topics

amplitude codingattractor neural networkattractorsfiring ratesmathieu equationmean field equationsneural integratorneural integratorsoscillator networkrecurrent connectivityspatial locationspatially distributed networkspike timingtheta rhythm

About the Speaker

Bard Ermentrout

University of Pittsburgh

Contact & Resources

Personal Website

www.pitt.edu/~phase/

Related Seminars

Seminar60%

Knight ADRC Seminar

neuro

Jan 20, 2025
Washington University in St. Louis, Neurology
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
January 2026
Full calendar →