World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Buschman lab, Princeton University
Showing your local timezone
Schedule
Tuesday, September 7, 2021
5:00 PM Europe/Berlin
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
WWNeuRise
Seminar location
No geocoded details are available for this content yet.
We must constantly adapt the rules we use to guide our attention. To understand how the brain learns these rules, we designed a novel task that required monkeys to learn which color is the most rewarded at a given time (the current rule). However, just as in real life, the monkey was never explicitly told the rule. Instead, they had to learn it through trial and error by choosing a color, receiving feedback (amount of reward), and then updating their internal rule. After the monkeys reached a behavioral criterion, the rule changed. This change was not cued but could be inferred based on reward feedback. Behavioral modeling found monkeys used rewards to learn the rules. After the rule changed, animals adopted one of two strategies. If the change was small, reflected in a small reward prediction error, the animals continuously updated their rule. However, for large changes, monkeys ‘reset’ their belief about the rule and re-learned the rule from scratch. To understand the neural correlates of learning new rules, we recorded neurons simultaneously from the prefrontal and parietal cortex. We found that the strength of the rule representation increased with the certainty about the current rule, and that the certainty about the rule was represented both implicitly and explicitly in the population.
Caroline Jahn
Buschman lab, Princeton University
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe