Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Dr
MIT, USA
Showing your local timezone
Schedule
Tuesday, February 16, 2021
11:30 PM America/New_York
Recording provided by the organiser.
Domain
NeuroscienceHost
Timing Research Forum
Duration
30 minutes
fMRI results have shown that the supplementary motor area (SMA) and the basal ganglia, most often discussed in their roles in generating action, are engaged by beat-based timing even in the absence of movement. Some have argued that the motor system is “recruited” by beat-based timing tasks due to the presence of motor-like timescales, but a deeper understanding of the roles of these motor structures is lacking. Reviewing a body of motor neurophysiology literature and drawing on the “active inference” framework, I argue that we can see the motor and timing functions of these brain areas as examples of dynamic sub-second prediction informed by sensory event timing. I hypothesize that in both cases, sub-second dynamics in SMA predict the progress of a temporal process outside the brain, and direct pathway activation in basal ganglia selects temporal and sensory predictions for the upcoming interval -- the only difference is that in motor processes, these predictions are made manifest through motor effectors. If we can unify our understanding of beat-based timing and motor control, we can draw on the substantial motor neuroscience literature to make conceptual leaps forward in the study of predictive timing and musical rhythm.
Jonathan Cannon
Dr
MIT, USA
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow