Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
SeminarPast EventNeuroscience

Sleepless in Vienna - how to rescue folding-deficient dopamine transporters by pharmacochaperoning

Michael Freissmuth

Prof

Medical University of Vienna

Schedule
Friday, June 18, 2021

Showing your local timezone

Schedule

Friday, June 18, 2021

5:00 PM Europe/Vienna

Host: The Neurotheory Forum

Access Seminar

Event Information

Domain

Neuroscience

Original Event

View source

Host

The Neurotheory Forum

Duration

70 minutes

Abstract

Diseases that arise from misfolding of an individual protein are rare. However, collectively, these folding diseases represent a large proportion of hereditary and acquired disorders. In fact, the term "Molecular Medicine" was coined by Linus Pauling in conjunction with the study of a folding disease, i.e. sickle cell anemia. In the past decade, we have witnessed an exponential growth in the number of mutations, which have been identified in genes encoding solute carriers (SLC). A sizable faction - presumably the majority - of these mutations result in misfolding of the encoded protein. While studying the export of the GABA transporter (SLC6A1) and of the serotonin transporter (SLC6A4), from the endoplasmic reticulum (ER), we discovered by serendipity that some ligands can correct the folding defect imparted by point mutations. These bind to the inward facing state. The most effective compound is noribogaine, the metabolite of ibogaine (an alkaloid first isolated from the shrub Tabernanthe iboga). There are 13 mutations in the human dopamine transporter (DAT, SLC6A3), which give rise to a syndrome of infantile Parkinsonism and dystonia. We capitalized on our insights to explore, if the disease-relevant mutant proteins were amenable to pharmacological correction. Drosopohila melanogaster, which lack the dopamine transporter, are hyperactive and sleepless (fumin in Japanese). Thus, mutated human DAT variants can be introduced into fumin flies. This allows for examining the effect of pharmacochaperones on delivery of DAT to the axonal territory and on restoring sleep. We explored the chemical space populated by variations of the ibogaine structure to identify an analogue (referred to as compound 9b), which was highly effective: compound 9b also restored folding in DAT variants, which were not amenable to rescue by noribogaine. Deficiencies in the human creatine transporter-1 (CrT1, SLC6A8) give rise to a syndrome of intellectual disability and seizures and accounts for 5% of genetically based intellectual disabilities in boys. Point mutations occur, in part, at positions, which are homologous to those of folding-deficient DAT variants. CrT1 lacks the rich pharmacology of monoamine transporters. Nevertheless, our insights are also applicable to rescuing some disease-related variants of CrT1. Finally, the question arises how one can address the folding problem. We propose a two-pronged approach: (i) analyzing the effect of mutations on the transport cycle by electrophysiological recordings; this allows for extracting information on the rates of conformational transitions. The underlying assumption posits that - even when remedied by pharmacochaperoning - folding-deficient mutants must differ in the conformational transitions associated with the transport cycle. (ii) analyzing the effect of mutations on the two components of protein stability, i.e. thermodynamic and kinetic stability. This is expected to provide a glimpse of the energy landscape, which governs the folding trajectory.

Topics

GABA transporterSLC6A3compound 9bdopamine transporterdrosophila melanogastermisfoldingnoribogainepharmacochaperoningserotonin transporter

About the Speaker

Michael Freissmuth

Prof

Medical University of Vienna

Contact & Resources

Personal Website

www.meduniwien.ac.at/hp/zpp/institute-abteilungen/zentrum/

Related Seminars

Seminar60%

Knight ADRC Seminar

neuro

Jan 20, 2025
Washington University in St. Louis, Neurology
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
January 2026
Full calendar →