Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Prof
Institute of Science and Technology Austria
Showing your local timezone
Schedule
Tuesday, June 2, 2020
4:00 PM Europe/Vienna
Recording provided by the organiser.
Domain
Host
IST Neuroscience
Duration
70 minutes
Ideas about optimization are at the core of how we approach biological complexity. Quantitative predictions about biological systems have been successfully derived from first principles in the context of efficient coding, metabolic and transport networks, evolution, reinforcement learning, and decision making, by postulating that a system has evolved to optimize some utility function under biophysical constraints. Yet as normative theories become increasingly high-dimensional and optimal solutions stop being unique, it gets progressively hard to judge whether theoretical predictions are consistent with, or "close to", data. I will illustrate these issues using efficient coding applied to simple neuronal models as well as to a complex and realistic biochemical reaction network. As a solution, we developed a statistical framework which smoothly interpolates between ab initio optimality predictions and Bayesian parameter inference from data, while also permitting statistically rigorous tests of optimality hypotheses.
Gasper Tkacik
Prof
Institute of Science and Technology Austria
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow