Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Prof
PMMH-ESPCI and Sorbonne University, Paris
Showing your local timezone
Schedule
Wednesday, September 23, 2020
12:00 AM America/New_York
Recording provided by the organiser.
Domain
Host
NYU Soft Matter Seminar
Duration
70 minutes
Understanding individual and macroscopic transport properties of motile micro-organisms in complex environments is a timely question, relevant to many ecological, medical and technological situations. At the fundamental level, this question is also receiving a lot of attention as fluids loaded with swimming micro-organisms has become a rich domain of applications and a conceptual playground for the statistical physics of “active matter”. The existence of microscopic sources of energy borne by the motile character of these micro-swimmers is driving self-organization processes at the origin of original emergent phases and unconventional macroscopic properties leading to revisit many standard concepts in the physics of suspensions. In this presentation, I will report on a recent exploration on the question of spontaneous formation of large scale collective motion in relation with the rheological response of active suspensions. I will also present new experiments showing how the motility of bacteria can be controlled such as to extract work macroscopically.
Eric Clement
Prof
PMMH-ESPCI and Sorbonne University, Paris
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow
neuro