Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Prof.
Princeton University
Showing your local timezone
Schedule
Thursday, June 11, 2020
5:30 PM Europe/London
Domain
NeuroscienceHost
Cortex Club
Duration
70 minutes
How are actions linked with subsequent outcomes to guide choices? The nucleus accumbens (NAc), which is implicated in this process, receives glutamatergic inputs from the prelimbic cortex (PL) and midline regions of the thalamus (mTH). However, little is known about what is represented in PL or mTH neurons that project to NAc (PL-NAc and mTH-NAc). By comparing these inputs during a reinforcement learning task in mice, we discovered that i) PL-NAc preferentially represents actions and choices, ii) mTH-NAc preferentially represents cues, iii) choice-selective activity in PL-NAc is organized in sequences that persist beyond the outcome. Through computational modelling, we demonstrate that these sequences can support the neural implementation of temporal difference learning, a powerful algorithm to connect actions and outcomes across time. Finally, we test and confirm predictions of our circuit model by direct manipulation of PL-NAc neurons. Thus, we integrate experiment and modelling to suggest a neural solution for credit assignment.
Ilana Witten
Prof.
Princeton University
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow