Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Prof
School of Psychology, University of Nottingham
Showing your local timezone
Schedule
Saturday, September 11, 2021
10:15 AM Australia/Sydney
Recording provided by the organiser.
Domain
NeuroscienceHost
Sydney Systems Neuroscience and Complexity SNAC
Duration
60 minutes
Large-scale, single neuron resolution recordings are inherently high-dimensional, with as many dimensions as neurons. To make sense of them, for many the answer is: reduce the number of dimensions. In this talk I argue we can distinguish weak and strong principles of neural dimension reduction. The weak principle is that dimension reduction is a convenient tool for making sense of complex neural data. The strong principle is that dimension reduction moves us closer to how neural circuits actually operate and compute. Elucidating these principles is crucial, for which we subscribe to provides radically different interpretations of the same dimension reduction techniques applied to the same data. I outline experimental evidence for each principle, but illustrate how we could make either the weak or strong principles appear to be true based on innocuous looking analysis decisions. These insights suggest arguments over low and high-dimensional neural activity need better constraints from both experiment and theory.
Mark Humphries
Prof
School of Psychology, University of Nottingham
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow