World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr
INCIA - University of Bordeaux / CNRS
Showing your local timezone
Schedule
Thursday, May 27, 2021
11:30 AM Europe/Paris
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
Ad hoc
Seminar location
No geocoded details are available for this content yet.
In highly volatile environments, performing actions that address current needs and desires is an ongoing challenge for living organisms. For example, the predictive value of environmental signals needs to be updated when predicted and actual outcomes differ. Furthermore, organisms also need to gain control over the environment through actions that are expected to produce specific outcomes. The data to be presented will show that these processes are highly reliant on thalamocortical circuits wherein thalamic nuclei make a critical contribution to adaptive decision-making, challenging the view that the thalamus only acts as a relay station for the cortical stage. Over the past few years, our work has highlighted the specific contribution of multiple thalamic nuclei in the ability to update the predictive link between events or the causal link between actions and their outcomes via the combination of targeted thalamic interventions (lesion, chemogenetics, disconnections) with behavioral procedures rooted in experimental psychology. We argue that several features of thalamocortical architecture are consistent with a prominent role for thalamic nuclei in shaping mental representations.
Mathieu Wolff
Dr
INCIA - University of Bordeaux / CNRS
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe