Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Theory and modeling of whisking rhythm generation in the brainstem

David Golomb

Ben Gurion University

Schedule
Saturday, January 30, 2021

Showing your local timezone

Schedule

Saturday, January 30, 2021

12:00 AM America/New_York

Watch recording
Host: van Vreeswijk TNS

Watch the seminar

Recording provided by the organiser.

Event Information

Domain

Neuroscience

Original Event

View source

Host

van Vreeswijk TNS

Duration

70 minutes

Abstract

The vIRt nucleus in the medulla, composed of mainly inhibitory neurons, is necessary for whisking rhythm generation. It innervates motoneurons in the facial nucleus (FN) that project to intrinsic vibrissa muscles. The nearby pre-Bötzinger complex (pBötC), which generates inhalation, sends inhibitory inputs to the vIRt nucleus which contribute to the synchronization of vIRt neurons. Lower-amplitude periodic whisking, however, can occur after decay of the pBötC signal. To explain how vIRt network generates these “intervening” whisks by bursting in synchrony, and how pBötC input induces strong whisks, we construct and analyze a conductance-based (CB) model of the vIRt circuit composed of hypothetical two groups, vIRtr and vIRtp, of bursting inhibitory neurons with spike-frequency adaptation currents and constant external inputs. The CB model is reduced to a rate model to enable analytical treatment. We find, analytically and computationally, that without pBötC input, periodic bursting states occur within a certain ranges of network connectivities. Whisk amplitudes increase with the level constant external input to the vIRT. With pBötC inhibition intact, the amplitude of the first whisk in a breathing cycle is larger than the intervening whisks for large pBötC input and small inhibitory coupling between the vIRT sub-populations. The pBötC input advances the next whisk and shortens its amplitude if it arrives at the beginning of the whisking cycle generated by the vIRT, and delays the next whisks if it arrives at the end of that cycle. Our theory provides a mechanism for whisking generation and reveals how whisking frequency and amplitude are controlled.

Topics

conductance-based modelfacial nucleusinhalationpre-Bötzinger complexinhibitory bursting networksinhibitory neuronsmedullanetwork connectivitypBötCpre-Bötzinger complexspike-frequency adaptationvIRt nucleuswhisking rhythm

About the Speaker

David Golomb

Ben Gurion University

Contact & Resources

Personal Website

www.bgu.ac.il/~golomb/

Related Seminars

Seminar60%

Knight ADRC Seminar

neuro

Jan 20, 2025
Washington University in St. Louis, Neurology
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
January 2026
Full calendar →