Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Timescales of neural activity: their inference, control, and relevance

Anna Levina

Universität Tübingen

Schedule
Wednesday, May 4, 2022

Showing your local timezone

Schedule

Wednesday, May 4, 2022

1:00 AM America/New_York

Watch recording
Host: van Vreeswijk TNS

Watch the seminar

Recording provided by the organiser.

Event Information

Domain

Neuroscience

Original Event

View source

Host

van Vreeswijk TNS

Duration

70 minutes

Abstract

Timescales characterize how fast the observables change in time. In neuroscience, they can be estimated from the measured activity and can be used, for example, as a signature of the memory trace in the network. I will first discuss the inference of the timescales from the neuroscience data comprised of the short trials and introduce a new unbiased method. Then, I will apply the method to the data recorded from a local population of cortical neurons from the visual area V4. I will demonstrate that the ongoing spiking activity unfolds across at least two distinct timescales - fast and slow - and the slow timescale increases when monkeys attend to the location of the receptive field. Which models can give rise to such behavior? Random balanced networks are known for their fast timescales; thus, a change in the neurons or network properties is required to mimic the data. I will propose a set of models that can control effective timescales and demonstrate that only the model with strong recurrent interactions fits the neural data. Finally, I will discuss the timescales' relevance for behavior and cortical computations.

Topics

attentioncortical neuronsmemory traceneural activityrandom balanced networksrecurrent interactionsspiking activitytimescalesvisual area V4

About the Speaker

Anna Levina

Universität Tübingen

Contact & Resources

Personal Website

uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/self-organization-and-optimality-in-neuronal-networks/people/anna-levina/

@selforganna?lang=en

Follow on Twitter/X

twitter.com/selforganna

Related Seminars

Seminar60%

Knight ADRC Seminar

neuro

Jan 20, 2025
Washington University in St. Louis, Neurology
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
January 2026
Full calendar →