Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Universität Tübingen
Showing your local timezone
Schedule
Wednesday, May 4, 2022
1:00 AM America/New_York
Recording provided by the organiser.
Domain
NeuroscienceHost
van Vreeswijk TNS
Duration
70 minutes
Timescales characterize how fast the observables change in time. In neuroscience, they can be estimated from the measured activity and can be used, for example, as a signature of the memory trace in the network. I will first discuss the inference of the timescales from the neuroscience data comprised of the short trials and introduce a new unbiased method. Then, I will apply the method to the data recorded from a local population of cortical neurons from the visual area V4. I will demonstrate that the ongoing spiking activity unfolds across at least two distinct timescales - fast and slow - and the slow timescale increases when monkeys attend to the location of the receptive field. Which models can give rise to such behavior? Random balanced networks are known for their fast timescales; thus, a change in the neurons or network properties is required to mimic the data. I will propose a set of models that can control effective timescales and demonstrate that only the model with strong recurrent interactions fits the neural data. Finally, I will discuss the timescales' relevance for behavior and cortical computations.
Anna Levina
Universität Tübingen
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow