Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Prof.
Norwegian University of Life Sciences
Showing your local timezone
Schedule
Wednesday, October 14, 2020
6:00 PM Europe/Berlin
Domain
NeuroscienceHost
BCCN Berlin lectures series
Duration
70 minutes
Starting with the work of Hodgkin and Huxley in the 1950s, we now have a fairly good understanding of how the spiking activity of neurons can be modelled mathematically. For cortical circuits the understanding is much more limited. Most network studies have considered stylized models with a single or a handful of neuronal populations consisting of identical neurons with statistically identical connection properties. However, real cortical networks have heterogeneous neural populations and much more structured synaptic connections. Unlike typical simplified cortical network models, real networks are also “multipurpose” in that they perform multiple functions. Historically the lack of computational resources has hampered the mathematical exploration of cortical networks. With the advent of modern supercomputers, however, simulations of networks comprising hundreds of thousands biologically detailed neurons are becoming feasible (Einevoll et al, Neuron, 2019). Further, a large-scale biologically network model of the mouse primary visual cortex comprising 230.000 neurons has recently been developed at the Allen Institute for Brain Science (Billeh et al, Neuron, 2020). Using this model as a starting point, I will discuss how we can move towards multipurpose models that incorporate the true biological complexity of cortical circuits and faithfully reproduce multiple experimental observables such as spiking activity, local field potentials or two-photon calcium imaging signals. Further, I will discuss how such validated comprehensive network models can be used to gain insights into the functioning of cortical circuits.
Gaute Einevoll
Prof.
Norwegian University of Life Sciences
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow