World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr
Donders Institute for Brain, Cognition and Behaviour
Showing your local timezone
Schedule
Wednesday, June 1, 2022
5:30 PM Europe/Berlin
Meeting Password
M?4u*q
Use this password when joining the live session
Recording provided by the organiser.
Many engineered and biological systems must trade off performance and energy use, and the brain is no exception. While there are theories on how activity levels are controlled in biological networks through feedback control (homeostasis), it is not clear what the effects on population coding are, and therefore how performance and energy can be traded off. In this talk we will consider this tradeoff in auto-encoding networks, in which there is a clear definition of performance (the coding loss). We first show how SNNs follow a characteristic trade-off curve between activity levels and coding loss, but that standard networks need to be retrained to achieve different tradeoff points. We next formalize this tradeoff with a joint loss function incorporating coding loss (performance) and activity loss (energy use). From this loss we derive a class of spiking networks which coordinates its spiking to minimize both the activity and coding losses -- and as a result can dynamically adjust its coding precision and energy use. The network utilizes several known activity control mechanisms for this --- threshold adaptation and feedback inhibition --- and elucidates their potential function within neural circuits. Using geometric intuition, we demonstrate how these mechanisms regulate coding precision, and thereby performance. Lastly, we consider how these insights could be transferred to trained SNNs. Overall, this work addresses a key energy-coding trade-off which is often overlooked in network studies, expands on our understanding of homeostasis in biological SNNs, as well as provides a clear framework for considering performance and energy use in artificial SNNs.
Sander Keemink
Dr
Donders Institute for Brain, Cognition and Behaviour
Contact & Resources