Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Dr
DeepMind
Showing your local timezone
Schedule
Friday, October 9, 2020
12:40 PM Europe/London
Recording provided by the organiser.
Domain
Host
SWC Symposium
Duration
70 minutes
The brain is remarkably flexible, and appears to instantly reconfigure its processing depending on what’s needed to solve a task at hand: fMRI studies indicate that distal brain areas appear to fluidly couple and decouple with one another depending on behavioral context. We investigated how the brain coordinates its activity across areas to inform complex, top-down control behaviors. Animals were trained to perform a novel brain machine interface task to guide a visual cursor to a reward zone, using activity recorded with widefield calcium imaging. This allowed us to screen for cortical areas implicated in causal neural control of the visual object. Animals could decorrelate normally highly-correlated areas to perform the task, and used an explore-exploit search in neural activity space to discover successful strategies. Higher visual and parietal areas were more active during the task in expert animals. Single unit recordings targeted to these areas indicated that the sensory representation of an object was sensitive to an animal’s subjective sense of controlling it.
Kelly Clancy
Dr
DeepMind
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow