Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
University of Washington
Showing your local timezone
Schedule
Wednesday, March 31, 2021
1:00 AM America/New_York
Recording provided by the organiser.
Domain
Host
van Vreeswijk TNS
Duration
70 minutes
The songbird zebra finch is an exemplary model system in which to study trial-and-error learning, as the bird learns its single song gradually through the production of many noisy renditions. It is also a good system in which to study the maintenance of motor skills, as the adult bird actively maintains its song and retains some residual plasticity. Motor learning occurs through the association of timing within the song, represented by sparse firing in nucleus HVC, with motor output, driven by nucleus RA. Here we show through modeling that the small level of observed variability in HVC can result in a network which is more easily able to adapt to change, and is most robust to cell damage or death, than an unperturbed network. In collaboration with Carlos Lois’ lab, we also consider the effect of directly perturbing HVC through viral injection of toxins that affect the firing of projection neurons. Following these perturbations, the song is profoundly affected but is able to almost perfectly recover. We characterize the changes in song acoustics and syntax, and propose models for HVC architecture and plasticity that can account for some of the observed effects. Finally, we suggest a potential role for inputs from nucleus Uva in helping to control timing precision in HVC.
Adrienne Fairhall
University of Washington
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow