Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Professor
Department of Chemical Engineering and Biotechnology, University of Cambridge
Showing your local timezone
Schedule
Tuesday, October 19, 2021
4:00 PM Europe/London
Recording provided by the organiser.
Domain
Host
Cambridge Neuro
Duration
70 minutes
The human gut microbiome has emerged as a key player in the bidirectional communication of the gut-brain axis, affecting various aspects of homeostasis and pathophysiology. Until recently, the majority of studies that seek to explore the mechanisms underlying the microbiome-gut-brain axis cross-talk relied almost exclusively on animal models, and particularly gnotobiotic mice. Despite the great progress made with these models, various limitations, including ethical considerations and interspecies differences that limit the translatability of data to human systems, pushed researchers to seek for alternatives. Over the past decades, the field of in vitro modelling of tissues has experienced tremendous growth, thanks to advances in 3D cell biology, materials, science and bioengineering, pushing further the borders of our ability to more faithfully emulate the in vivo situation. Organ-on-chip technology and bioengineered tissues have emerged as highly promising alternatives to animal models for a wide range of applications. In this talk I’ll discuss our progress towards generating a complete platform of the human microbiota-gut-brain axis with integrated monitoring and sensing capabilities. Bringing together principles of materials science, tissue engineering, 3D cell biology and bioelectronics, we are building advanced models of the GI and the BBB /NVU, with real-time and label-free monitoring units adapted in the model architecture, towards a robust and more physiologically relevant human in vitro model, aiming to i) elucidate the role of microbiota in the gut-brain axis communication, ii) to study how diet and impaired microbiota profiles affect various (patho-)physiologies, and iii) to test personalised medicine approaches for disease modelling and drug testing.
Róisín Owens
Professor
Department of Chemical Engineering and Biotechnology, University of Cambridge
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow