← Back

Absorption

Topic spotlight
TopicWorld Wide

absorption

Discover seminars, jobs, and research tagged with absorption across World Wide.
3 curated items3 Seminars
Updated over 2 years ago
3 items · absorption
3 results
SeminarOpen SourceRecording

OpenSFDI: an open hardware project for label-free measurements of tissue optical properties with spatial frequency domain imaging

Darren Roblyer
Boston University
Jun 27, 2023

Spatial frequency domain imaging (SFDI) is a diffuse optical measurement technique that can quantify tissue optical absorption and reduced scattering on a pixel by-pixel basis. Measurements of absorption at different wavelengths enable the extraction of molar concentrations of tissue chromophores over a wide field, providing a noncontact and label-free means to assess tissue viability, oxygenation, microarchitecture, and molecular content. In this talk, I will describe openSFDI, an open-source guide for building a low-cost, small-footprint, multi-wavelength SFDI system capable of quantifying absorption and reduced scattering as well as oxyhemoglobin and deoxyhemoglobin concentrations in biological tissue. The openSFDI project has a companion website which provides a complete parts list along with detailed instructions for assembling the openSFDI system. I will also review several technological advances our lab has recently made, including the extension of SFDI to the shortwave infrared wavelength band (900-1300 nm), where water and lipids provide strong contrast. Finally, I will discuss several preclinical and clinical applications for SFDI, including applications related to cancer, dermatology, rheumatology, cardiovascular disease, and others.

SeminarNeuroscienceRecording

PIEZO2 in somatosensory neurons coordinates gastrointestinal transit

Rocio Servin-Vences
The Scripps Research Institute
Feb 28, 2023

The transit of food through the gastrointestinal tract is critical for nutrient absorption and survival, and the gastrointestinal tract has the ability to initiate motility reflexes triggered by luminal distention. This complex function depends on the crosstalk between extrinsic and intrinsic neuronal innervation within the intestine, as well as local specialized enteroendocrine cells. However, the molecular mechanisms and the subset of sensory neurons underlying the initiation and regulation of intestinal motility remain largely unknown. Here, we show that humans lacking PIEZO2 exhibit impaired bowel sensation and motility. Piezo2 in mouse dorsal root but not nodose ganglia is required to sense gut content, and this activity slows down food transit rates in the stomach, small intestine, and colon. Indeed, Piezo2 is directly required to detect colon distension in vivo. Our study unveils the mechanosensory mechanisms that regulate the transit of luminal contents throughout the gut, which is a critical process to ensure proper digestion, nutrient absorption, and waste removal. These findings set the foundation of future work to identify the highly regulated interactions between sensory neurons, enteric neurons and non- neuronal cells that control gastrointestinal motility.

SeminarNeuroscienceRecording

Retinal responses to natural inputs

Fred Rieke
University of Washington
Apr 17, 2022

The research in my lab focuses on sensory signal processing, particularly in cases where sensory systems perform at or near the limits imposed by physics. Photon counting in the visual system is a beautiful example. At its peak sensitivity, the performance of the visual system is limited largely by the division of light into discrete photons. This observation has several implications for phototransduction and signal processing in the retina: rod photoreceptors must transduce single photon absorptions with high fidelity, single photon signals in photoreceptors, which are only 0.03 – 0.1 mV, must be reliably transmitted to second-order cells in the retina, and absorption of a single photon by a single rod must produce a noticeable change in the pattern of action potentials sent from the eye to the brain. My approach is to combine quantitative physiological experiments and theory to understand photon counting in terms of basic biophysical mechanisms. Fortunately there is more to visual perception than counting photons. The visual system is very adept at operating over a wide range of light intensities (about 12 orders of magnitude). Over most of this range, vision is mediated by cone photoreceptors. Thus adaptation is paramount to cone vision. Again one would like to understand quantitatively how the biophysical mechanisms involved in phototransduction, synaptic transmission, and neural coding contribute to adaptation.