← Back

Activity

Topic spotlight
TopicWorld Wide

activity

Discover seminars, jobs, and research tagged with activity across World Wide.
100 curated items60 Seminars40 ePosters
Updated about 1 month ago
100 items · activity
100 results
SeminarNeuroscience

Spike train structure of cortical transcriptomic populations in vivo

Kenneth Harris
UCL, UK
Oct 28, 2025

The cortex comprises many neuronal types, which can be distinguished by their transcriptomes: the sets of genes they express. Little is known about the in vivo activity of these cell types, particularly as regards the structure of their spike trains, which might provide clues to cortical circuit function. To address this question, we used Neuropixels electrodes to record layer 5 excitatory populations in mouse V1, then transcriptomically identified the recorded cell types. To do so, we performed a subsequent recording of the same cells using 2-photon (2p) calcium imaging, identifying neurons between the two recording modalities by fingerprinting their responses to a “zebra noise” stimulus and estimating the path of the electrode through the 2p stack with a probabilistic method. We then cut brain slices and performed in situ transcriptomics to localize ~300 genes using coppaFISH3d, a new open source method, and aligned the transcriptomic data to the 2p stack. Analysis of the data is ongoing, and suggests substantial differences in spike time coordination between ET and IT neurons, as well as between transcriptomic subtypes of both these excitatory types.

SeminarNeuroscience

Understanding reward-guided learning using large-scale datasets

Kim Stachenfeld
DeepMind, Columbia U
Jul 8, 2025

Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.

SeminarNeuroscienceRecording

Representational drift in human visual cortex

Zvi Roth
Bar-Ilan
Jun 30, 2025
SeminarNeuroscience

Developmental and evolutionary perspectives on thalamic function

Dr. Bruno Averbeck
National Institute of Mental Health, Maryland, USA
Jun 10, 2025

Brain organization and function is a complex topic. We are good at establishing correlates of perception and behavior across forebrain circuits, as well as manipulating activity in these circuits to affect behavior. However, we still lack good models for the large-scale organization and function of the forebrain. What are the contributions of the cortex, basal ganglia, and thalamus to behavior? In addressing these questions, we often ascribe function to each area as if it were an independent processing unit. However, we know from the anatomy that the cortex, basal ganglia, and thalamus, are massively interconnected in a large network. One way to generate insight into these questions is to consider the evolution and development of forebrain systems. In this talk, I will discuss the developmental and evolutionary (comparative anatomy) data on the thalamus, and how it fits within forebrain networks. I will address questions including, when did the thalamus appear in evolution, how is the thalamus organized across the vertebrate lineage, and how can the change in the organization of forebrain networks affect behavioral repertoires.

SeminarNeuroscience

The Direct Impact Of Amyloid-Beta Oligomers On Neuronal Activity And Neurotransmitter Releases On In Vivo Analysis

Vincent Hervé
Université de Montréal
Jun 4, 2025
SeminarNeuroscience

Neural mechanisms of rhythmic motor control in Drosophila

John Tuthill
University of Washington, Seattle, USA
May 15, 2025

All animal locomotion is rhythmic,whether it is achieved through undulatory movement of the whole body or the coordination of articulated limbs. Neurobiologists have long studied locomotor circuits that produce rhythmic activity with non-rhythmic input, also called central pattern generators (CPGs). However, the cellular and microcircuit implementation of a walking CPG has not been described for any limbed animal. New comprehensive connectomes of the fruit fly ventral nerve cord (VNC) provide an opportunity to study rhythmogenic walking circuits at a synaptic scale.We use a data-driven network modeling approach to identify and characterize a putative walking CPG in the Drosophila leg motor system.

SeminarNeuroscience

Understanding reward-guided learning using large-scale datasets

Kim Stachenfeld
DeepMind, Columbia U
May 13, 2025

Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.

SeminarNeuroscience

Relating circuit dynamics to computation: robustness and dimension-specific computation in cortical dynamics

Shaul Druckmann
Stanford department of Neurobiology and department of Psychiatry and Behavioral Sciences
Apr 22, 2025

Neural dynamics represent the hard-to-interpret substrate of circuit computations. Advances in large-scale recordings have highlighted the sheer spatiotemporal complexity of circuit dynamics within and across circuits, portraying in detail the difficulty of interpreting such dynamics and relating it to computation. Indeed, even in extremely simplified experimental conditions, one observes high-dimensional temporal dynamics in the relevant circuits. This complexity can be potentially addressed by the notion that not all changes in population activity have equal meaning, i.e., a small change in the evolution of activity along a particular dimension may have a bigger effect on a given computation than a large change in another. We term such conditions dimension-specific computation. Considering motor preparatory activity in a delayed response task we utilized neural recordings performed simultaneously with optogenetic perturbations to probe circuit dynamics. First, we revealed a remarkable robustness in the detailed evolution of certain dimensions of the population activity, beyond what was thought to be the case experimentally and theoretically. Second, the robust dimension in activity space carries nearly all of the decodable behavioral information whereas other non-robust dimensions contained nearly no decodable information, as if the circuit was setup to make informative dimensions stiff, i.e., resistive to perturbations, leaving uninformative dimensions sloppy, i.e., sensitive to perturbations. Third, we show that this robustness can be achieved by a modular organization of circuitry, whereby modules whose dynamics normally evolve independently can correct each other’s dynamics when an individual module is perturbed, a common design feature in robust systems engineering. Finally, we will recent work extending this framework to understanding the neural dynamics underlying preparation of speech.

SeminarPsychology

Deepfake emotional expressions trigger the uncanny valley brain response, even when they are not recognised as fake

Casey Becker
University of Pittsburgh
Apr 15, 2025

Facial expressions are inherently dynamic, and our visual system is sensitive to subtle changes in their temporal sequence. However, researchers often use dynamic morphs of photographs—simplified, linear representations of motion—to study the neural correlates of dynamic face perception. To explore the brain's sensitivity to natural facial motion, we constructed a novel dynamic face database using generative neural networks, trained on a verified set of video-recorded emotional expressions. The resulting deepfakes, consciously indistinguishable from videos, enabled us to separate biological motion from photorealistic form. Results showed that conventional dynamic morphs elicit distinct responses in the brain compared to videos and photos, suggesting they violate expectations (n400) and have reduced social salience (late positive potential). This suggests that dynamic morphs misrepresent facial dynamism, resulting in misleading insights about the neural and behavioural correlates of face perception. Deepfakes and videos elicited largely similar neural responses, suggesting they could be used as a proxy for real faces in vision research, where video recordings cannot be experimentally manipulated. And yet, despite being consciously undetectable as fake, deepfakes elicited an expectation violation response in the brain. This points to a neural sensitivity to naturalistic facial motion, beyond conscious awareness. Despite some differences in neural responses, the realism and manipulability of deepfakes make them a valuable asset for research where videos are unfeasible. Using these stimuli, we proposed a novel marker for the conscious perception of naturalistic facial motion – Frontal delta activity – which was elevated for videos and deepfakes, but not for photos or dynamic morphs.

SeminarNeuroscienceRecording

An inconvenient truth: pathophysiological remodeling of the inner retina in photoreceptor degeneration

Michael Telias
University of Rochester
Apr 7, 2025

Photoreceptor loss is the primary cause behind vision impairment and blindness in diseases such as retinitis pigmentosa and age-related macular degeneration. However, the death of rods and cones allows retinoids to permeate the inner retina, causing retinal ganglion cells to become spontaneously hyperactive, severely reducing the signal-to-noise ratio, and creating interference in the communication between the surviving retina and the brain. Treatments aimed at blocking or reducing hyperactivity improve vision initiated from surviving photoreceptors and could enhance the signal fidelity generated by vision restoration methodologies.

SeminarNeuroscience

Circuit Mechanisms of Remote Memory

Lauren DeNardo, PhD
Department of Physiology, David Geffen School of Medicine, UCLA
Feb 10, 2025

Memories of emotionally-salient events are long-lasting, guiding behavior from minutes to years after learning. The prelimbic cortex (PL) is required for fear memory retrieval across time and is densely interconnected with many subcortical and cortical areas involved in recent and remote memory recall, including the temporal association area (TeA). While the behavioral expression of a memory may remain constant over time, the neural activity mediating memory-guided behavior is dynamic. In PL, different neurons underlie recent and remote memory retrieval and remote memory-encoding neurons have preferential functional connectivity with cortical association areas, including TeA. TeA plays a preferential role in remote compared to recent memory retrieval, yet how TeA circuits drive remote memory retrieval remains poorly understood. Here we used a combination of activity-dependent neuronal tagging, viral circuit mapping and miniscope imaging to investigate the role of the PL-TeA circuit in fear memory retrieval across time in mice. We show that PL memory ensembles recruit PL-TeA neurons across time, and that PL-TeA neurons have enhanced encoding of salient cues and behaviors at remote timepoints. This recruitment depends upon ongoing synaptic activity in the learning-activated PL ensemble. Our results reveal a novel circuit encoding remote memory and provide insight into the principles of memory circuit reorganization across time.

SeminarNeuroscience

Predicting traveling waves: a new mathematical technique to link the structure of a network to the specific patterns of neural activity

Roberto Budzinski
Western University
Feb 5, 2025
SeminarNeuroscience

Dimensionality reduction beyond neural subspaces

Alex Cayco Gajic
École Normale Supérieure
Jan 28, 2025

Over the past decade, neural representations have been studied from the lens of low-dimensional subspaces defined by the co-activation of neurons. However, this view has overlooked other forms of covarying structure in neural activity, including i) condition-specific high-dimensional neural sequences, and ii) representations that change over time due to learning or drift. In this talk, I will present a new framework that extends the classic view towards additional types of covariability that are not constrained to a fixed, low-dimensional subspace. In addition, I will present sliceTCA, a new tensor decomposition that captures and demixes these different types of covariability to reveal task-relevant structure in neural activity. Finally, I will close with some thoughts regarding the circuit mechanisms that could generate mixed covariability. Together this work points to a need to consider new possibilities for how neural populations encode sensory, cognitive, and behavioral variables beyond neural subspaces.

SeminarNeuroscience

Analyzing Network-Level Brain Processing and Plasticity Using Molecular Neuroimaging

Alan Jasanoff
Massachusetts Institute of Technology
Jan 27, 2025

Behavior and cognition depend on the integrated action of neural structures and populations distributed throughout the brain. We recently developed a set of molecular imaging tools that enable multiregional processing and plasticity in neural networks to be studied at a brain-wide scale in rodents and nonhuman primates. Here we will describe how a novel genetically encoded activity reporter enables information flow in virally labeled neural circuitry to be monitored by fMRI. Using the reporter to perform functional imaging of synaptically defined neural populations in the rat somatosensory system, we show how activity is transformed within brain regions to yield characteristics specific to distinct output projections. We also show how this approach enables regional activity to be modeled in terms of inputs, in a paradigm that we are extending to address circuit-level origins of functional specialization in marmoset brains. In the second part of the talk, we will discuss how another genetic tool for MRI enables systematic studies of the relationship between anatomical and functional connectivity in the mouse brain. We show that variations in physical and functional connectivity can be dissociated both across individual subjects and over experience. We also use the tool to examine brain-wide relationships between plasticity and activity during an opioid treatment. This work demonstrates the possibility of studying diverse brain-wide processing phenomena using molecular neuroimaging.

SeminarNeuroscience

The Brain Prize winners' webinar

Larry Abbott, Haim Sompolinsky, Terry Sejnowski
Columbia University; Harvard University / Hebrew University; Salk Institute
Nov 29, 2024

This webinar brings together three leaders in theoretical and computational neuroscience—Larry Abbott, Haim Sompolinsky, and Terry Sejnowski—to discuss how neural circuits generate fundamental aspects of the mind. Abbott illustrates mechanisms in electric fish that differentiate self-generated electric signals from external sensory cues, showing how predictive plasticity and two-stage signal cancellation mediate a sense of self. Sompolinsky explores attractor networks, revealing how discrete and continuous attractors can stabilize activity patterns, enable working memory, and incorporate chaotic dynamics underlying spontaneous behaviors. He further highlights the concept of object manifolds in high-level sensory representations and raises open questions on integrating connectomics with theoretical frameworks. Sejnowski bridges these motifs with modern artificial intelligence, demonstrating how large-scale neural networks capture language structures through distributed representations that parallel biological coding. Together, their presentations emphasize the synergy between empirical data, computational modeling, and connectomics in explaining the neural basis of cognition—offering insights into perception, memory, language, and the emergence of mind-like processes.

SeminarNeuroscience

Brain circuits for spatial navigation

Ann Hermundstad, Ila Fiete, Barbara Webb
Janelia Research Campus; MIT; University of Edinburgh
Nov 28, 2024

In this webinar on spatial navigation circuits, three researchers—Ann Hermundstad, Ila Fiete, and Barbara Webb—discussed how diverse species solve navigation problems using specialized yet evolutionarily conserved brain structures. Hermundstad illustrated the fruit fly’s central complex, focusing on how hardwired circuit motifs (e.g., sinusoidal steering curves) enable rapid, flexible learning of goal-directed navigation. This framework combines internal heading representations with modifiable goal signals, leveraging activity-dependent plasticity to adapt to new environments. Fiete explored the mammalian head-direction system, demonstrating how population recordings reveal a one-dimensional ring attractor underlying continuous integration of angular velocity. She showed that key theoretical predictions—low-dimensional manifold structure, isometry, uniform stability—are experimentally validated, underscoring parallels to insect circuits. Finally, Webb described honeybee navigation, featuring path integration, vector memories, route optimization, and the famous waggle dance. She proposed that allocentric velocity signals and vector manipulation within the central complex can encode and transmit distances and directions, enabling both sophisticated foraging and inter-bee communication via dance-based cues.

SeminarNeuroscience

Sensory cognition

SueYeon Chung, Srini Turaga
New York University; Janelia Research Campus
Nov 28, 2024

This webinar features presentations from SueYeon Chung (New York University) and Srinivas Turaga (HHMI Janelia Research Campus) on theoretical and computational approaches to sensory cognition. Chung introduced a “neural manifold” framework to capture how high-dimensional neural activity is structured into meaningful manifolds reflecting object representations. She demonstrated that manifold geometry—shaped by radius, dimensionality, and correlations—directly governs a population’s capacity for classifying or separating stimuli under nuisance variations. Applying these ideas as a data analysis tool, she showed how measuring object-manifold geometry can explain transformations along the ventral visual stream and suggested that manifold principles also yield better self-supervised neural network models resembling mammalian visual cortex. Turaga described simulating the entire fruit fly visual pathway using its connectome, modeling 64 key cell types in the optic lobe. His team’s systematic approach—combining sparse connectivity from electron microscopy with simple dynamical parameters—recapitulated known motion-selective responses and produced novel testable predictions. Together, these studies underscore the power of combining connectomic detail, task objectives, and geometric theories to unravel neural computations bridging from stimuli to cognitive functions.

SeminarNeuroscience

Learning and Memory

Nicolas Brunel, Ashok Litwin-Kumar, Julijana Gjeorgieva
Duke University; Columbia University; Technical University Munich
Nov 28, 2024

This webinar on learning and memory features three experts—Nicolas Brunel, Ashok Litwin-Kumar, and Julijana Gjorgieva—who present theoretical and computational approaches to understanding how neural circuits acquire and store information across different scales. Brunel discusses calcium-based plasticity and how standard “Hebbian-like” plasticity rules inferred from in vitro or in vivo datasets constrain synaptic dynamics, aligning with classical observations (e.g., STDP) and explaining how synaptic connectivity shapes memory. Litwin-Kumar explores insights from the fruit fly connectome, emphasizing how the mushroom body—a key site for associative learning—implements a high-dimensional, random representation of sensory features. Convergent dopaminergic inputs gate plasticity, reflecting a high-dimensional “critic” that refines behavior. Feedback loops within the mushroom body further reveal sophisticated interactions between learning signals and action selection. Gjorgieva examines how activity-dependent plasticity rules shape circuitry from the subcellular (e.g., synaptic clustering on dendrites) to the cortical network level. She demonstrates how spontaneous activity during development, Hebbian competition, and inhibitory-excitatory balance collectively establish connectivity motifs responsible for key computations such as response normalization.

SeminarNeuroscience

Understanding the complex behaviors of the ‘simple’ cerebellar circuit

Megan Carey
The Champalimaud Center for the Unknown, Lisbon, Portugal
Nov 13, 2024

Every movement we make requires us to precisely coordinate muscle activity across our body in space and time. In this talk I will describe our efforts to understand how the brain generates flexible, coordinated movement. We have taken a behavior-centric approach to this problem, starting with the development of quantitative frameworks for mouse locomotion (LocoMouse; Machado et al., eLife 2015, 2020) and locomotor learning, in which mice adapt their locomotor symmetry in response to environmental perturbations (Darmohray et al., Neuron 2019). Combined with genetic circuit dissection, these studies reveal specific, cerebellum-dependent features of these complex, whole-body behaviors. This provides a key entry point for understanding how neural computations within the highly stereotyped cerebellar circuit support the precise coordination of muscle activity in space and time. Finally, I will present recent unpublished data that provide surprising insights into how cerebellar circuits flexibly coordinate whole-body movements in dynamic environments.

SeminarNeuroscience

Brain-Wide Compositionality and Learning Dynamics in Biological Agents

Kanaka Rajan
Harvard Medical School
Nov 12, 2024

Biological agents continually reconcile the internal states of their brain circuits with incoming sensory and environmental evidence to evaluate when and how to act. The brains of biological agents, including animals and humans, exploit many evolutionary innovations, chiefly modularity—observable at the level of anatomically-defined brain regions, cortical layers, and cell types among others—that can be repurposed in a compositional manner to endow the animal with a highly flexible behavioral repertoire. Accordingly, their behaviors show their own modularity, yet such behavioral modules seldom correspond directly to traditional notions of modularity in brains. It remains unclear how to link neural and behavioral modularity in a compositional manner. We propose a comprehensive framework—compositional modes—to identify overarching compositionality spanning specialized submodules, such as brain regions. Our framework directly links the behavioral repertoire with distributed patterns of population activity, brain-wide, at multiple concurrent spatial and temporal scales. Using whole-brain recordings of zebrafish brains, we introduce an unsupervised pipeline based on neural network models, constrained by biological data, to reveal highly conserved compositional modes across individuals despite the naturalistic (spontaneous or task-independent) nature of their behaviors. These modes provided a scaffolding for other modes that account for the idiosyncratic behavior of each fish. We then demonstrate experimentally that compositional modes can be manipulated in a consistent manner by behavioral and pharmacological perturbations. Our results demonstrate that even natural behavior in different individuals can be decomposed and understood using a relatively small number of neurobehavioral modules—the compositional modes—and elucidate a compositional neural basis of behavior. This approach aligns with recent progress in understanding how reasoning capabilities and internal representational structures develop over the course of learning or training, offering insights into the modularity and flexibility in artificial and biological agents.

SeminarNeuroscience

Use case determines the validity of neural systems comparisons

Erin Grant
Gatsby Computational Neuroscience Unit & Sainsbury Wellcome Centre at University College London
Oct 15, 2024

Deep learning provides new data-driven tools to relate neural activity to perception and cognition, aiding scientists in developing theories of neural computation that increasingly resemble biological systems both at the level of behavior and of neural activity. But what in a deep neural network should correspond to what in a biological system? This question is addressed implicitly in the use of comparison measures that relate specific neural or behavioral dimensions via a particular functional form. However, distinct comparison methodologies can give conflicting results in recovering even a known ground-truth model in an idealized setting, leaving open the question of what to conclude from the outcome of a systems comparison using any given methodology. Here, we develop a framework to make explicit and quantitative the effect of both hypothesis-driven aspects—such as details of the architecture of a deep neural network—as well as methodological choices in a systems comparison setting. We demonstrate via the learning dynamics of deep neural networks that, while the role of the comparison methodology is often de-emphasized relative to hypothesis-driven aspects, this choice can impact and even invert the conclusions to be drawn from a comparison between neural systems. We provide evidence that the right way to adjudicate a comparison depends on the use case—the scientific hypothesis under investigation—which could range from identifying single-neuron or circuit-level correspondences to capturing generalizability to new stimulus properties

SeminarNeuroscience

Beyond Homogeneity: Characterizing Brain Disorder Heterogeneity through EEG and Normative Modeling

Mahmoud Hassan
Founder and CEO of MINDIG, Rennes, France. Adjunct professor, Reykjavik University, Reykjavik, Iceland.
Oct 8, 2024

Electroencephalography (EEG) has been thoroughly studied for decades in psychiatry research. Yet its integration into clinical practice as a diagnostic/prognostic tool remains unachieved. We hypothesize that a key reason is the underlying patient's heterogeneity, overlooked in psychiatric EEG research relying on a case-control approach. We combine HD-EEG with normative modeling to quantify this heterogeneity using two well-established and extensively investigated EEG characteristics -spectral power and functional connectivity- across a cohort of 1674 patients with attention-deficit/hyperactivity disorder, autism spectrum disorder, learning disorder, or anxiety, and 560 matched controls. Normative models showed that deviations from population norms among patients were highly heterogeneous and frequency-dependent. Deviation spatial overlap across patients did not exceed 40% and 24% for spectral and connectivity, respectively. Considering individual deviations in patients has significantly enhanced comparative analysis, and the identification of patient-specific markers has demonstrated a correlation with clinical assessments, representing a crucial step towards attaining precision psychiatry through EEG.

SeminarOpen Source

Optogenetic control of Nodal signaling patterns

Nathan Lord
Assistant Professor, Department of Computational and Systems Biology
Sep 19, 2024

Embryos issue instructions to their cells in the form of patterns of signaling activity. Within these patterns, the distribution of signaling in time and space directs the fate of embryonic cells. Tools to perturb developmental signaling with high resolution in space and time can help reveal how these patterns are decoded to make appropriate fate decisions. In this talk, I will present new optogenetic reagents and an experimental pipeline for creating designer Nodal signaling patterns in live zebrafish embryos. Our improved optoNodal reagents eliminate dark activity and improve response kinetics, without sacrificing dynamic range. We adapted an ultra-widefield microscopy platform for parallel light patterning in up to 36 embryos and demonstrated precise spatial control over Nodal signaling activity and downstream gene expression. Using this system, we demonstrate that patterned Nodal activation can initiate specification and internalization movements of endodermal precursors. Further, we used patterned illumination to generate synthetic signaling patterns in Nodal signaling mutants, rescuing several characteristic developmental defects. This study establishes an experimental toolkit for systematic exploration of Nodal signaling patterns in live embryos.

SeminarNeuroscience

Physical Activity, Sedentary Behaviour and Brain Health

Kelly Aine
Trinity College Dublin, The University of Dublin
Sep 19, 2024
SeminarNeuroscience

Marsupial joeys illuminate the onset of neural activity patterns in the developing neocortex

Rodrigo Suarez
University of Queensland in Australia
Jul 1, 2024
SeminarNeuroscience

Metabolic-functional coupling of parvalbmunin-positive GABAergic interneurons in the injured and epileptic brain

Chris Dulla
Tufts
Jun 18, 2024

Parvalbumin-positive GABAergic interneurons (PV-INs) provide inhibitory control of excitatory neuron activity, coordinate circuit function, and regulate behavior and cognition. PV-INs are uniquely susceptible to loss and dysfunction in traumatic brain injury (TBI) and epilepsy but the cause of this susceptibility is unknown. One hypothesis is that PV-INs use specialized metabolic systems to support their high-frequency action potential firing and that metabolic stress disrupts these systems, leading to their dysfunction and loss. Metabolism-based therapies can restore PV-IN function after injury in preclinical TBI models. Based on these findings, we hypothesize that (1) PV-INs are highly metabolically specialized, (2) these specializations are lost after TBI, and (3) restoring PV-IN metabolic specializations can improve PV-IN function as well as TBI-related outcomes. Using novel single-cell approaches, we can now quantify cell-type-specific metabolism in complex tissues to determine whether PV-IN metabolic dysfunction contributes to the pathophysiology of TBI.

SeminarNeuroscience

Probing neural population dynamics with recurrent neural networks

Chethan Pandarinath
Emory University and Georgia Tech
Jun 11, 2024

Large-scale recordings of neural activity are providing new opportunities to study network-level dynamics with unprecedented detail. However, the sheer volume of data and its dynamical complexity are major barriers to uncovering and interpreting these dynamics. I will present latent factor analysis via dynamical systems, a sequential autoencoding approach that enables inference of dynamics from neuronal population spiking activity on single trials and millisecond timescales. I will also discuss recent adaptations of the method to uncover dynamics from neural activity recorded via 2P Calcium imaging. Finally, time permitting, I will mention recent efforts to improve the interpretability of deep-learning based dynamical systems models.

SeminarPsychology

The Role of Cognitive Appraisal in the Relationship between Personality and Emotional Reactivity

Livia Sacchi
University of Lausanne
May 12, 2024

Emotion is defined as a rapid psychological process involving experiential, expressive and physiological responses. These emerge following an appraisal process that involves cognitive evaluations of the environment assessing its relevance, implication, coping potential, and normative significance. It has been suggested that changes in appraisal processes lead to changes in the resulting emotional nature. Simultaneously, it was demonstrated that personality can be seen as a predisposition to feel more frequently certain emotions, but the personality-appraisal-emotional response chain is rarely fully investigated. The present project thus sought to investigate the extent to which personality traits influence certain appraisals, which in turn influence the subsequent emotional reactions via a systematic analysis of the link between personality traits of different current models, specific appraisals, and emotional response patterns at the experiential, expressive, and physiological levels. Major results include the coherence of emotion components clustering, and the centrality of the pleasantness, coping potential and consequences appraisals, in context; and the differentiated mediating role of cognitive appraisal in the relation between personality and the intensity and duration of an emotional state, and autonomic arousal, such as Extraversion-pleasantness-experience, and Neuroticism-powerlessness-arousal. Elucidating these relationships deepens our understanding of individual differences in emotional reactivity and spot routes of action on appraisal processes to modify upcoming adverse emotional responses, with a broader societal impact on clinical and non-clinical populations.

SeminarNeuroscience

Roles of inhibition in stabilizing and shaping the response of cortical networks

Nicolas Brunel
Duke University
Apr 4, 2024

Inhibition has long been thought to stabilize the activity of cortical networks at low rates, and to shape significantly their response to sensory inputs. In this talk, I will describe three recent collaborative projects that shed light on these issues. (1) I will show how optogenetic excitation of inhibition neurons is consistent with cortex being inhibition stabilized even in the absence of sensory inputs, and how this data can constrain the coupling strengths of E-I cortical network models. (2) Recent analysis of the effects of optogenetic excitation of pyramidal cells in V1 of mice and monkeys shows that in some cases this optogenetic input reshuffles the firing rates of neurons of the network, leaving the distribution of rates unaffected. I will show how this surprising effect can be reproduced in sufficiently strongly coupled E-I networks. (3) Another puzzle has been to understand the respective roles of different inhibitory subtypes in network stabilization. Recent data reveal a novel, state dependent, paradoxical effect of weakening AMPAR mediated synaptic currents onto SST cells. Mathematical analysis of a network model with multiple inhibitory cell types shows that this effect tells us in which conditions SST cells are required for network stabilization.

SeminarNeuroscienceRecording

Executive functions in the brain of deaf individuals – sensory and language effects

Velia Cardin
UCL
Mar 20, 2024

Executive functions are cognitive processes that allow us to plan, monitor and execute our goals. Using fMRI, we investigated how early deafness influences crossmodal plasticity and the organisation of executive functions in the adult human brain. Results from a range of visual executive function tasks (working memory, task switching, planning, inhibition) show that deaf individuals specifically recruit superior temporal “auditory” regions during task switching. Neural activity in auditory regions predicts behavioural performance during task switching in deaf individuals, highlighting the functional relevance of the observed cortical reorganisation. Furthermore, language grammatical skills were correlated with the level of activation and functional connectivity of fronto-parietal networks. Together, these findings show the interplay between sensory and language experience in the organisation of executive processing in the brain.

SeminarNeuroscience

Investigating activity-dependent processes during cortical neuronal assembly in development and disease

Simona Lodato
Humanitas University
Mar 19, 2024
SeminarNeuroscience

Epileptic micronetworks and their clinical relevance

Michael Wenzel
Bonn University
Mar 12, 2024

A core aspect of clinical epileptology revolves around relating epileptic field potentials to underlying neural sources (e.g. an “epileptogenic focus”). Yet still, how neural population activity relates to epileptic field potentials and ultimately clinical phenomenology, remains far from being understood. After a brief overview on this topic, this seminar will focus on unpublished work, with an emphasis on seizure-related focal spreading depression. The presented results will include hippocampal and neocortical chronic in vivo two-photon population imaging and local field potential recordings of epileptic micronetworks in mice, in the context of viral encephalitis or optogenetic stimulation. The findings are corroborated by invasive depth electrode recordings (macroelectrodes and BF microwires) in epilepsy patients during pre-surgical evaluation. The presented work carries general implications for clinical epileptology, and basic epilepsy research.

SeminarNeuroscience

Brain-heart interactions at the edges of consciousness

Diego Candia-Rivera
Paris Brain Institute (ICM)/Sorbonne Université
Mar 7, 2024

Various clinical cases have provided evidence linking cardiovascular, neurological, and psychiatric disorders to changes in the brain-heart interaction. Our recent experimental evidence on patients with disorders of consciousness revealed that observing brain-heart interactions helps to detect residual consciousness, even in patients with absence of behavioral signs of consciousness. Those findings support hypotheses suggesting that visceral activity is involved in the neurobiology of consciousness and sum to the existing evidence in healthy participants in which the neural responses to heartbeats reveal perceptual and self-consciousness. Furthermore, the presence of non-linear, complex, and bidirectional communication between brain and heartbeat dynamics can provide further insights into the physiological state of the patient following severe brain injury. These developments on methodologies to analyze brain-heart interactions open new avenues for understanding neural functioning at a large-scale level, uncovering that peripheral bodily activity can influence brain homeostatic processes, cognition, and behavior.

SeminarNeuroscience

Learning produces a hippocampal cognitive map in the form of an orthogonalized state machine

Nelson Spruston
Janelia, Ashburn, USA
Mar 5, 2024

Cognitive maps confer animals with flexible intelligence by representing spatial, temporal, and abstract relationships that can be used to shape thought, planning, and behavior. Cognitive maps have been observed in the hippocampus, but their algorithmic form and the processes by which they are learned remain obscure. Here, we employed large-scale, longitudinal two-photon calcium imaging to record activity from thousands of neurons in the CA1 region of the hippocampus while mice learned to efficiently collect rewards from two subtly different versions of linear tracks in virtual reality. The results provide a detailed view of the formation of a cognitive map in the hippocampus. Throughout learning, both the animal behavior and hippocampal neural activity progressed through multiple intermediate stages, gradually revealing improved task representation that mirrored improved behavioral efficiency. The learning process led to progressive decorrelations in initially similar hippocampal neural activity within and across tracks, ultimately resulting in orthogonalized representations resembling a state machine capturing the inherent struture of the task. We show that a Hidden Markov Model (HMM) and a biologically plausible recurrent neural network trained using Hebbian learning can both capture core aspects of the learning dynamics and the orthogonalized representational structure in neural activity. In contrast, we show that gradient-based learning of sequence models such as Long Short-Term Memory networks (LSTMs) and Transformers do not naturally produce such orthogonalized representations. We further demonstrate that mice exhibited adaptive behavior in novel task settings, with neural activity reflecting flexible deployment of the state machine. These findings shed light on the mathematical form of cognitive maps, the learning rules that sculpt them, and the algorithms that promote adaptive behavior in animals. The work thus charts a course toward a deeper understanding of biological intelligence and offers insights toward developing more robust learning algorithms in artificial intelligence.

SeminarNeuroscience

Unifying the mechanisms of hippocampal episodic memory and prefrontal working memory

James Whittington
Stanford University / University of Oxford
Feb 13, 2024

Remembering events in the past is crucial to intelligent behaviour. Flexible memory retrieval, beyond simple recall, requires a model of how events relate to one another. Two key brain systems are implicated in this process: the hippocampal episodic memory (EM) system and the prefrontal working memory (WM) system. While an understanding of the hippocampal system, from computation to algorithm and representation, is emerging, less is understood about how the prefrontal WM system can give rise to flexible computations beyond simple memory retrieval, and even less is understood about how the two systems relate to each other. Here we develop a mathematical theory relating the algorithms and representations of EM and WM by showing a duality between storing memories in synapses versus neural activity. In doing so, we develop a formal theory of the algorithm and representation of prefrontal WM as structured, and controllable, neural subspaces (termed activity slots). By building models using this formalism, we elucidate the differences, similarities, and trade-offs between the hippocampal and prefrontal algorithms. Lastly, we show that several prefrontal representations in tasks ranging from list learning to cue dependent recall are unified as controllable activity slots. Our results unify frontal and temporal representations of memory, and offer a new basis for understanding the prefrontal representation of WM

SeminarNeuroscience

Trends in NeuroAI - Meta's MEG-to-image reconstruction

Reese Kneeland
Jan 4, 2024

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: Brain-optimized inference improves reconstructions of fMRI brain activity Abstract: The release of large datasets and developments in AI have led to dramatic improvements in decoding methods that reconstruct seen images from human brain activity. We evaluate the prospect of further improving recent decoding methods by optimizing for consistency between reconstructions and brain activity during inference. We sample seed reconstructions from a base decoding method, then iteratively refine these reconstructions using a brain-optimized encoding model that maps images to brain activity. At each iteration, we sample a small library of images from an image distribution (a diffusion model) conditioned on a seed reconstruction from the previous iteration. We select those that best approximate the measured brain activity when passed through our encoding model, and use these images for structural guidance during the generation of the small library in the next iteration. We reduce the stochasticity of the image distribution at each iteration, and stop when a criterion on the "width" of the image distribution is met. We show that when this process is applied to recent decoding methods, it outperforms the base decoding method as measured by human raters, a variety of image feature metrics, and alignment to brain activity. These results demonstrate that reconstruction quality can be significantly improved by explicitly aligning decoding distributions to brain activity distributions, even when the seed reconstruction is output from a state-of-the-art decoding algorithm. Interestingly, the rate of refinement varies systematically across visual cortex, with earlier visual areas generally converging more slowly and preferring narrower image distributions, relative to higher-level brain areas. Brain-optimized inference thus offers a succinct and novel method for improving reconstructions and exploring the diversity of representations across visual brain areas. Speaker: Reese Kneeland is a Ph.D. student at the University of Minnesota working in the Naselaris lab. Paper link: https://arxiv.org/abs/2312.07705

SeminarPsychology

Characterising Representations of Goal Obstructiveness and Uncertainty Across Behavior, Physiology, and Brain Activity Through a Video Game Paradigm

Mi Xue Tan
University of Geneva
Dec 17, 2023

The nature of emotions and their neural underpinnings remain debated. Appraisal theories such as the component process model propose that the perception and evaluation of events (appraisal) is the key to eliciting the range of emotions we experience. Here we study whether the framework of appraisal theories provides a clearer account for the differentiation of emotional episodes and their functional organisation in the brain. We developed a stealth game to manipulate appraisals in a systematic yet immersive way. The interactive nature of video games heightens self-relevance through the experience of goal-directed action or reaction, evoking strong emotions. We show that our manipulations led to changes in behaviour, physiology and brain activations.

SeminarNeuroscience

Astrocyte reprogramming / activation and brain homeostasis

Thomaidou Dimitra
Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
Dec 12, 2023

Astrocytes are multifunctional glial cells, implicated in neurogenesis and synaptogenesis, supporting and fine-tuning neuronal activity and maintaining brain homeostasis by controlling blood-brain barrier permeability. During the last years a number of studies have shown that astrocytes can also be converted into neurons if they force-express neurogenic transcription factors or miRNAs. Direct astrocytic reprogramming to induced-neurons (iNs) is a powerful approach for manipulating cell fate, as it takes advantage of the intrinsic neural stem cell (NSC) potential of brain resident reactive astrocytes. To this end, astrocytic cell fate conversion to iNs has been well-established in vitro and in vivo using combinations of transcription factors (TFs) or chemical cocktails. Challenging the expression of lineage-specific TFs is accompanied by changes in the expression of miRNAs, that post-transcriptionally modulate high numbers of neurogenesis-promoting factors and have therefore been introduced, supplementary or alternatively to TFs, to instruct direct neuronal reprogramming. The neurogenic miRNA miR-124 has been employed in direct reprogramming protocols supplementary to neurogenic TFs and other miRNAs to enhance direct neurogenic conversion by suppressing multiple non-neuronal targets. In our group we aimed to investigate whether miR-124 is sufficient to drive direct reprogramming of astrocytes to induced-neurons (iNs) on its own both in vitro and in vivo and elucidate its independent mechanism of reprogramming action. Our in vitro data indicate that miR-124 is a potent driver of the reprogramming switch of astrocytes towards an immature neuronal fate. Elucidation of the molecular pathways being triggered by miR-124 by RNA-seq analysis revealed that miR-124 is sufficient to instruct reprogramming of cortical astrocytes to immature induced-neurons (iNs) in vitro by down-regulating genes with important regulatory roles in astrocytic function. Among these, the RNA binding protein Zfp36l1, implicated in ARE-mediated mRNA decay, was found to be a direct target of miR-124, that be its turn targets neuronal-specific proteins participating in cortical development, which get de-repressed in miR-124-iNs. Furthermore, miR-124 is potent to guide direct neuronal reprogramming of reactive astrocytes to iNs of cortical identity following cortical trauma, a novel finding confirming its robust reprogramming action within the cortical microenvironment under neuroinflammatory conditions. In parallel to their reprogramming properties, astrocytes also participate in the maintenance of blood-brain barrier integrity, which ensures the physiological functioning of the central nervous system and gets affected contributing to the pathology of several neurodegenerative diseases. To study in real time the dynamic physical interactions of astrocytes with brain vasculature under homeostatic and pathological conditions, we performed 2-photon brain intravital imaging in a mouse model of systemic neuroinflammation, known to trigger astrogliosis and microgliosis and to evoke changes in astrocytic contact with brain vasculature. Our in vivo findings indicate that following neuroinflammation the endfeet of activated perivascular astrocytes lose their close proximity and physiological cross-talk with vasculature, however this event is at compensated by the cross-talk of astrocytes with activated microglia, safeguarding blood vessel coverage and maintenance of blood-brain integrity.

SeminarNeuroscience

Trends in NeuroAI - Meta's MEG-to-image reconstruction

Paul Scotti
Dec 6, 2023

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). This will be an informal journal club presentation, we do not have an author of the paper joining us. Title: Brain decoding: toward real-time reconstruction of visual perception Abstract: In the past five years, the use of generative and foundational AI systems has greatly improved the decoding of brain activity. Visual perception, in particular, can now be decoded from functional Magnetic Resonance Imaging (fMRI) with remarkable fidelity. This neuroimaging technique, however, suffers from a limited temporal resolution (≈0.5 Hz) and thus fundamentally constrains its real-time usage. Here, we propose an alternative approach based on magnetoencephalography (MEG), a neuroimaging device capable of measuring brain activity with high temporal resolution (≈5,000 Hz). For this, we develop an MEG decoding model trained with both contrastive and regression objectives and consisting of three modules: i) pretrained embeddings obtained from the image, ii) an MEG module trained end-to-end and iii) a pretrained image generator. Our results are threefold: Firstly, our MEG decoder shows a 7X improvement of image-retrieval over classic linear decoders. Second, late brain responses to images are best decoded with DINOv2, a recent foundational image model. Third, image retrievals and generations both suggest that MEG signals primarily contain high-level visual features, whereas the same approach applied to 7T fMRI also recovers low-level features. Overall, these results provide an important step towards the decoding - in real time - of the visual processes continuously unfolding within the human brain. Speaker: Dr. Paul Scotti (Stability AI, MedARC) Paper link: https://arxiv.org/abs/2310.19812

SeminarNeuroscienceRecording

Inducing short to medium neuroplastic effects with Transcranial Ultrasound Stimulation

Elsa Fouragnan
Brain Research and Imaging Centre, University of Plymouth
Nov 29, 2023

Sound waves can be used to modify brain activity safely and transiently with unprecedented precision even deep in the brain - unlike traditional brain stimulation methods. In a series of studies in humans and non-human primates, I will show that Transcranial Ultrasound Stimulation (TUS) can have medium- to long-lasting effects. Multiple read-outs allow us to conclude that TUS can perturb neuronal tissues up to 2h after intervention, including changes in local and distributed brain network configurations, behavioural changes, task-related neuronal changes and chemical changes in the sonicated focal volume. Combined with multiple neuroimaging techniques (resting state functional Magnetic Resonance Imaging [rsfMRI], Spectroscopy [MRS] and task-related fMRI changes), this talk will focus on recent human TUS studies.

SeminarNeuroscienceRecording

Event-related frequency adjustment (ERFA): A methodology for investigating neural entrainment

Mattia Rosso
Ghent University, IPEM Institute for Systematic Musicology
Nov 28, 2023

Neural entrainment has become a phenomenon of exceptional interest to neuroscience, given its involvement in rhythm perception, production, and overt synchronized behavior. Yet, traditional methods fail to quantify neural entrainment due to a misalignment with its fundamental definition (e.g., see Novembre and Iannetti, 2018; Rajandran and Schupp, 2019). The definition of entrainment assumes that endogenous oscillatory brain activity undergoes dynamic frequency adjustments to synchronize with environmental rhythms (Lakatos et al., 2019). Following this definition, we recently developed a method sensitive to this process. Our aim was to isolate from the electroencephalographic (EEG) signal an oscillatory component that is attuned to the frequency of a rhythmic stimulation, hypothesizing that the oscillation would adaptively speed up and slow down to achieve stable synchronization over time. To induce and measure these adaptive changes in a controlled fashion, we developed the event-related frequency adjustment (ERFA) paradigm (Rosso et al., 2023). A total of twenty healthy participants took part in our study. They were instructed to tap their finger synchronously with an isochronous auditory metronome, which was unpredictably perturbed by phase-shifts and tempo-changes in both positive and negative directions across different experimental conditions. EEG was recorded during the task, and ERFA responses were quantified as changes in instantaneous frequency of the entrained component. Our results indicate that ERFAs track the stimulus dynamics in accordance with the perturbation type and direction, preferentially for a sensorimotor component. The clear and consistent patterns confirm that our method is sensitive to the process of frequency adjustment that defines neural entrainment. In this Virtual Journal Club, the discussion of our findings will be complemented by methodological insights beneficial to researchers in the fields of rhythm perception and production, as well as timing in general. We discuss the dos and don’ts of using instantaneous frequency to quantify oscillatory dynamics, the advantages of adopting a multivariate approach to source separation, the robustness against the confounder of responses evoked by periodic stimulation, and provide an overview of domains and concrete examples where the methodological framework can be applied.

SeminarNeuroscienceRecording

Neural Mechanisms of Subsecond Temporal Encoding in Primary Visual Cortex

Samuel Post
University of California, Riverside
Nov 28, 2023

Subsecond timing underlies nearly all sensory and motor activities across species and is critical to survival. While subsecond temporal information has been found across cortical and subcortical regions, it is unclear if it is generated locally and intrinsically or if it is a read out of a centralized clock-like mechanism. Indeed, mechanisms of subsecond timing at the circuit level are largely obscure. Primary sensory areas are well-suited to address these question as they have early access to sensory information and provide minimal processing to it: if temporal information is found in these regions, it is likely to be generated intrinsically and locally. We test this hypothesis by training mice to perform an audio-visual temporal pattern sensory discrimination task as we use 2-photon calcium imaging, a technique capable of recording population level activity at single cell resolution, to record activity in primary visual cortex (V1). We have found significant changes in network dynamics through mice’s learning of the task from naive to middle to expert levels. Changes in network dynamics and behavioral performance are well accounted for by an intrinsic model of timing in which the trajectory of q network through high dimensional state space represents temporal sensory information. Conversely, while we found evidence of other temporal encoding models, such as oscillatory activity, we did not find that they accounted for increased performance but were in fact correlated with the intrinsic model itself. These results provide insight into how subsecond temporal information is encoded mechanistically at the circuit level.

SeminarNeuroscience

Bio-realistic multiscale modeling of cortical circuits

Anton Arkhipov
Allen Institute
Nov 23, 2023

A central question in neuroscience is how the structure of brain circuits determines their activity and function. To explore this systematically, we developed a 230,000-neuron model of mouse primary visual cortex (area V1). The model integrates a broad array of experimental data:Distribution and morpho-electric properties of different neuron types in V1.

SeminarNeuroscience

Prefrontal mechanisms involved in learning distractor-resistant working memory in a dual task

Albert Compte
IDIBAPS
Nov 16, 2023

Working memory (WM) is a cognitive function that allows the short-term maintenance and manipulation of information when no longer accessible to the senses. It relies on temporarily storing stimulus features in the activity of neuronal populations. To preserve these dynamics from distraction it has been proposed that pre and post-distraction population activity decomposes into orthogonal subspaces. If orthogonalization is necessary to avoid WM distraction, it should emerge as performance in the task improves. We sought evidence of WM orthogonalization learning and the underlying mechanisms by analyzing calcium imaging data from the prelimbic (PrL) and anterior cingulate (ACC) cortices of mice as they learned to perform an olfactory dual task. The dual task combines an outer Delayed Paired-Association task (DPA) with an inner Go-NoGo task. We examined how neuronal activity reflected the process of protecting the DPA sample information against Go/NoGo distractors. As mice learned the task, we measured the overlap between the neural activity onto the low-dimensional subspaces that encode sample or distractor odors. Early in the training, pre-distraction activity overlapped with both sample and distractor subspaces. Later in the training, pre-distraction activity was strictly confined to the sample subspace, resulting in a more robust sample code. To gain mechanistic insight into how these low-dimensional WM representations evolve with learning we built a recurrent spiking network model of excitatory and inhibitory neurons with low-rank connections. The model links learning to (1) the orthogonalization of sample and distractor WM subspaces and (2) the orthogonalization of each subspace with irrelevant inputs. We validated (1) by measuring the angular distance between the sample and distractor subspaces through learning in the data. Prediction (2) was validated in PrL through the photoinhibition of ACC to PrL inputs, which induced early-training neural dynamics in well-trained animals. In the model, learning drives the network from a double-well attractor toward a more continuous ring attractor regime. We tested signatures for this dynamical evolution in the experimental data by estimating the energy landscape of the dynamics on a one-dimensional ring. In sum, our study defines network dynamics underlying the process of learning to shield WM representations from distracting tasks.

SeminarNeuroscienceRecording

Virtual Brain Twins for Brain Medicine and Epilepsy

Viktor Jirsa
Aix Marseille Université - Inserm
Nov 7, 2023

Over the past decade we have demonstrated that the fusion of subject-specific structural information of the human brain with mathematical dynamic models allows building biologically realistic brain network models, which have a predictive value, beyond the explanatory power of each approach independently. The network nodes hold neural population models, which are derived using mean field techniques from statistical physics expressing ensemble activity via collective variables. Our hybrid approach fuses data-driven with forward-modeling-based techniques and has been successfully applied to explain healthy brain function and clinical translation including aging, stroke and epilepsy. Here we illustrate the workflow along the example of epilepsy: we reconstruct personalized connectivity matrices of human epileptic patients using Diffusion Tensor weighted Imaging (DTI). Subsets of brain regions generating seizures in patients with refractory partial epilepsy are referred to as the epileptogenic zone (EZ). During a seizure, paroxysmal activity is not restricted to the EZ, but may recruit other healthy brain regions and propagate activity through large brain networks. The identification of the EZ is crucial for the success of neurosurgery and presents one of the historically difficult questions in clinical neuroscience. The application of latest techniques in Bayesian inference and model inversion, in particular Hamiltonian Monte Carlo, allows the estimation of the EZ, including estimates of confidence and diagnostics of performance of the inference. The example of epilepsy nicely underwrites the predictive value of personalized large-scale brain network models. The workflow of end-to-end modeling is an integral part of the European neuroinformatics platform EBRAINS and enables neuroscientists worldwide to build and estimate personalized virtual brains.

SeminarNeuroscience

Movements and engagement during decision-making

Anne Churchland
University of California Los Angeles, USA
Nov 7, 2023

When experts are immersed in a task, a natural assumption is that their brains prioritize task-related activity. Accordingly, most efforts to understand neural activity during well-learned tasks focus on cognitive computations and task-related movements. Surprisingly, we observed that during decision-making, the cortex-wide activity of multiple cell types is dominated by movements, especially “uninstructed movements”, that are spontaneously expressed. These observations argue that animals execute expert decisions while performing richly varied, uninstructed movements that profoundly shape neural activity. To understand the relationship between these movements and decision-making, we examined the movements more closely. We tested whether the magnitude or the timing of the movements was correlated with decision-making performance. To do this, we partitioned movements into two groups: task-aligned movements that were well predicted by task events (such as the onset of the sensory stimulus or choice) and task independent movement (TIM) that occurred independently of task events. TIM had a reliable, inverse correlation with performance in head-restrained mice and freely moving rats. This hinted that the timing of spontaneous movements could indicate periods of disengagement. To confirm this, we compared TIM to the latent behavioral states recovered by a hidden Markov model with Bernoulli generalized linear model observations (GLM-HMM) and found these, again, to be inversely correlated. Finally, we examined the impact of these behavioral states on neural activity. Surprisingly, we found that the same movement impacts neural activity more strongly when animals are disengaged. An intriguing possibility is that these larger movement signals disrupt cognitive computations, leading to poor decision-making performance. Taken together, these observations argue that movements and cognitionare closely intertwined, even during expert decision-making.

SeminarNeuroscience

The Brain Prize winner's webinar

Michael Greenberg, Erin Schuman, Christine Holt
Harvard University, Max Planck Institute for Brain Research, University of Cambridge
Oct 24, 2023

In 2023, Michael Greenberg (Harvard, USA), Erin Schuman (Max Planck Institute for Brain Research, Germany) and Christine Holt (University of Cambridge, UK) were awarded The Brain Prize for their pioneering work on activity-dependent gene transcription and local mRNA translation. In this webinar, all 3 Brain Prize winners will present their work. Each speaker will present for 25 minutes and the webinar will conclude with an open discussion. The webinar will be moderated by Kelsey Martin from the Simons Foundation.

SeminarNeuroscienceRecording

Rodents to Investigate the Neural Basis of Audiovisual Temporal Processing and Perception

Ashley Schormans
BrainsCAN, Western University, Canada.
Sep 26, 2023

To form a coherent perception of the world around us, we are constantly processing and integrating sensory information from multiple modalities. In fact, when auditory and visual stimuli occur within ~100 ms of each other, individuals tend to perceive the stimuli as a single event, even though they occurred separately. In recent years, our lab, and others, have developed rat models of audiovisual temporal perception using behavioural tasks such as temporal order judgments (TOJs) and synchrony judgments (SJs). While these rodent models demonstrate metrics that are consistent with humans (e.g., perceived simultaneity, temporal acuity), we have sought to confirm whether rodents demonstrate the hallmarks of audiovisual temporal perception, such as predictable shifts in their perception based on experience and sensitivity to alterations in neurochemistry. Ultimately, our findings indicate that rats serve as an excellent model to study the neural mechanisms underlying audiovisual temporal perception, which to date remains relativity unknown. Using our validated translational audiovisual behavioural tasks, in combination with optogenetics, neuropharmacology and in vivo electrophysiology, we aim to uncover the mechanisms by which inhibitory neurotransmission and top-down circuits finely control ones’ perception. This research will significantly advance our understanding of the neuronal circuitry underlying audiovisual temporal perception, and will be the first to establish the role of interneurons in regulating the synchronized neural activity that is thought to contribute to the precise binding of audiovisual stimuli.

ePoster

A bottom-up approach to Activity Dependent and Activity Independent Synaptic Turnover

Mohammadreza Soltanipour, Aaron Nagel, Katrin Willig, Fred Wolf

Bernstein Conference 2024

ePoster

Chronic optogenetic stimulation has the potential to shape the collective activity of neuronal cell cultures

Cyprian Adler, Friedrich Schwarz, Julian Vogel, Christine Stadelmann, Fred Wolf, Manuel Schottdorf, Andreas Neef

Bernstein Conference 2024

ePoster

Connectome and task predict neural activity across the fly visual system

Janne Lappalainen, Fabian Tschopp, Sridhama Prakhya, Mason McGill, Aljoscha Nern, Kazunori Shinomiya, Shin-ya Takemura, Eyal Gruntman, Jakob Macke, Srinivas Turaga

Bernstein Conference 2024

ePoster

Activity-Dependent Network Development in Silico: The Role of Inhibition in Neuronal Growth and Migration

Richmond Crisostomo, Shreya Agarwal, Ulrich Egert, Samora Okujeni

Bernstein Conference 2024

ePoster

Cortical feedback shapes high order structure of population activity to improve sensory coding

Augustine(Xiaoran) Yuan, Laura Busse, Wiktor Młynarski

Bernstein Conference 2024

ePoster

Distinct patterns of default mode network activity differentially represent divergent thinking and mathematical reasoning.

Rikki Rabinovich, Tyler Davis, Mark Libowitz, Roger Beaty, Shervin Rahimpour, Elliot Smith, Ben Shofty

Bernstein Conference 2024

ePoster

Age Effects on Eye Blink-Related Neural Activity and Functional Connectivity in Driving

Emad Alyan, Stefan Arnau, Stephan Getzmann, Julian Elias Reiser, Melanie Karthaus, Edmund Wascher

Bernstein Conference 2024

ePoster

Electrogenic Na+/K+-ATPases constrain excitable cell activity and pose additional evolutionary pressure

Liz Weerdmeester, Jan-Hendrik Schleimer, Susanne Schreiber

Bernstein Conference 2024

ePoster

Endogenous and exogenous brain fluctuations induce and block alpha activity

Axel Hutt, Jérémie Lefebvre

Bernstein Conference 2024

ePoster

Exploring behavioral correlations with neuron activity through synaptic plasticity.

Arnaud HUBERT, Charlotte PIETTE, Sylvie PEREZ, Hugues BERRY, Jonathan TOUBOUL, Laurent VENANCE

Bernstein Conference 2024

ePoster

Forecasting motor cortex activity with a nonlinear latent dynamical system model

Memming Park

Bernstein Conference 2024

ePoster

Increase in dimensionality and sparsification of neural activity over development across diverse cortical areas

Lorenzo Butti, Nathaniel Powel, Bettina Hein, Deyue Kong, Jonas Elpelt, Haleigh Mulholland, Gordon Smith, Matthias Kaschube

Bernstein Conference 2024

ePoster

Integrating activity measurements into connectome-constrained and task-optimized models

Linda Ulmer, Janne Lappalainen, Srinivas Turaga, Jakob Macke

Bernstein Conference 2024

ePoster

Linking Spontaneous Synaptic Activity to Learning

Pietro Verzelli, Maximillian Eggl, Tatjana Tchumatchenko

Bernstein Conference 2024

ePoster

Flygenvectors: The spatial and temporal structure of neural activity across the fly brain

COSYNE 2022

ePoster

Modulation of Spontaneous Activity Patterns in Developing Sensory Cortices via Inhibition

Feiyu Wang, JaeAnn Dwulet, Julijana Gjorgjieva

Bernstein Conference 2024

ePoster

Presynaptic Activity-dependent calcium dynamics in cytosol & ER, and a brief proposal for a morphodynamic model of growth cone motility

Nicole Flores-Pretell, Ranjita Dutta Roy, Daniel Gonzalez-Esparza, Dmitry Logashenko, Markus Breit, Markus Knodel, Gabriel Wittum

Bernstein Conference 2024

ePoster

Psychedelic space of neuronal population activity: emerging and disappearing contrastive dimensions

Dirk Goldschmitt, Bradley Dearnley, Clare Howarth, Jason Berwick, Li Su, Michael Okun

Bernstein Conference 2024

ePoster

Recognizing relevant information in neural activity

Katarína Studeničová, Xing Chen, Karolína Korvasová

Bernstein Conference 2024

ePoster

State-dependent population activity, dimensionality and communication in the visual cortex

Aitor Morales-Gregorio, Anno Kurth, Junji Ito, Alexander Kleinjohann, Frédéric Barthélemy, Thomas Brochier, Sonja Grün, Sacha van Albada

Bernstein Conference 2024

ePoster

Synaptic Plasticity Mechanisms Enable Incremental Learning of Spatio-Temporal Activity Patterns

Mohammad Habibabadi, Lenny Müller, Klaus Pawelzik

Bernstein Conference 2024

ePoster

Unified C. elegans Neural Activity and Connectivity Datasets for Building Foundation Models of a Small Nervous System

Quilee Simeon, Anshul Kashyap, Konrad Kording, Ed Boyden

Bernstein Conference 2024

ePoster

Activity-dependent dendrite growth through formation and removal of synapses

COSYNE 2022

ePoster

Action recognition best explains neural activity in cuneate nucleus

COSYNE 2022

ePoster

Bias-free estimation of information content in temporally sparse neuronal activity

COSYNE 2022

ePoster

GABAA receptors modulate anxiety-like behavior through the central amygdala area in rats with higher physical activity

Zahra Sudani, Ali Akbar Salari, Saeed Naghibi

FENS Forum 2024

ePoster

Efficient learning of low dimensional latent dynamics in multiscale spiking and LFP population activity

COSYNE 2022

ePoster

Emergence of functional circuits in the absence of neural activity

COSYNE 2022

ePoster

Emergence of modular patterned activity in developing cortex through intracortical network interactions

COSYNE 2022

ePoster

Environmental Statistics of Temporally Ordered Stimuli Modify Activity in the Primary Visual Cortex

COSYNE 2022

ePoster

Evolution of neural activity in circuits bridging sensory and abstract knowledge

COSYNE 2022

ePoster

Flygenvectors: The spatial and temporal structure of neural activity across the fly brain

COSYNE 2022

ePoster

Impact of single gene mutation on circuit structure and spontaneous activity in the developing cortex

COSYNE 2022

ePoster

Impact of single gene mutation on circuit structure and spontaneous activity in the developing cortex

COSYNE 2022

ePoster

Indirect-projecting striatal neurons constrain timed action via ‘ramping’ activity.

COSYNE 2022

ePoster

Indirect-projecting striatal neurons constrain timed action via ‘ramping’ activity.

COSYNE 2022

ePoster

Input-specific regulation of locus coeruleus activity for mouse maternal behavior

COSYNE 2022

ePoster

Input-specific regulation of locus coeruleus activity for mouse maternal behavior

COSYNE 2022

ePoster

Inter-areal patterned microstimulation selectively drives PFC activity and behavior in a memory task

COSYNE 2022

ePoster

Intrinsic dimension of neural activity: comparing artificial and biological neural networks

Jacopo Fadanni, Giacomo Gasparotto, Rosalba Pacelli, Marco Dal Maschio, Marco Salamanca, Marica Albanesi, Pietro Rotondo, Michele Allegra

Bernstein Conference 2024