Topic spotlight
TopicWorld Wide

ADM

Discover seminars, jobs, and research tagged with ADM across World Wide.
61 curated items31 Seminars30 ePosters
Updated 3 days ago
61 items · ADM
61 results
SeminarNeuroscience

Choice between methamphetamine and food is modulated by reinforcement interval and central drug metabolism

Marlaina Stocco
Western University
Dec 3, 2025
SeminarArtificial IntelligenceRecording

Computational modelling of ocular pharmacokinetics

Arto Urtti
School of Pharmacy, University of Eastern Finland
Apr 21, 2025

Pharmacokinetics in the eye is an important factor for the success of ocular drug delivery and treatment. Pharmacokinetic features determine the feasible routes of drug administration, dosing levels and intervals, and it has impact on eventual drug responses. Several physical, biochemical, and flow-related barriers limit drug exposure of anterior and posterior ocular target tissues during treatment during local (topical, subconjunctival, intravitreal) and systemic administration (intravenous, per oral). Mathematical models integrate joint impact of various barriers on ocular pharmacokinetics (PKs) thereby helping drug development. The models are useful in describing (top-down) and predicting (bottom-up) pharmacokinetics of ocular drugs. This is useful also in the design and development of new drug molecules and drug delivery systems. Furthermore, the models can be used for interspecies translation and probing of disease effects on pharmacokinetics. In this lecture, ocular pharmacokinetics and current modelling methods (noncompartmental analyses, compartmental, physiologically based, and finite element models) are introduced. Future challenges are also highlighted (e.g. intra-tissue distribution, prediction of drug responses, active transport).

SeminarPsychology

PhenoSign - Molecular Dynamic Insights

Andreas Häberli
PhenoSign
Feb 25, 2025

Do You Know Your Blood Glucose Level? You Probably Should! A single measurement is not enough to truly understand your metabolic health. Blood glucose levels fluctuate dynamically, and meaningful insights require continuous monitoring over time. But glucose is just one example. Many other molecular concentrations in the body are not static. Their variations are influenced by individual physiology and overall health. PhenoSign, a Swiss MedTech startup, is on a mission to become the leader in real-time molecular analysis of complex fluids, supporting clinical decision-making and life sciences applications. By providing real-time, in-situ molecular insights, we aim to advance medicine and transform life sciences research. This talk will provide an overview of PhenoSign’s journey since its inception in 2022—our achievements, challenges, and the strategic roadmap we are executing to shape the future of real-time molecular diagnostics.

SeminarNeuroscience

Influence of the context of administration in the antidepressant-like effects of the psychedelic 5-MeO-DMT

Romain Hacquet
Université de Toulouse
Aug 28, 2024

Psychedelics like psilocybin have shown rapid and long-lasting efficacy on depressive and anxiety symptoms. Other psychedelics with shorter half-lives, such as DMT and 5-MeO-DMT, have also shown promising preliminary outcomes in major depression, making them interesting candidates for clinical practice. Despite several promising clinical studies, the influence of the context on therapeutic responses or adverse effects remains poorly documented. To address this, we conducted preclinical studies evaluating the psychopharmacological profile of 5-MeO-DMT in contexts previously validated in mice as either pleasant (positive setting) or aversive (negative setting). Healthy C57BL/6J male mice received a single intraperitoneal (i.p.) injection of 5-MeO-DMT at doses of 0.5, 5, and 10 mg/kg, with assessments at 2 hours, 24 hours, and one week post-administration. In a corticosterone (CORT) mouse model of depression, 5-MeO-DMT was administered in different settings, and behavioral tests mimicking core symptoms of depression and anxiety were conducted. In CORT-exposed mice, an acute dose of 0.5 mg/kg administered in a neutral setting produced antidepressant-like effects at 24 hours, as observed by reduced immobility time in the Tail Suspension Test (TST). In a positive setting, the drug also reduced latency to first immobility and total immobility time in the TST. However, these beneficial effects were negated in a negative setting, where 5-MeO-DMT failed to produce antidepressant-like effects and instead elicited an anxiogenic response in the Elevated Plus Maze (EPM).Our results indicate a strong influence of setting on the psychopharmacological profile of 5-MeO-DMT. Future experiments will examine cortical markers of pre- and post-synaptic density to correlate neuroplasticity changes with the behavioral effects of 5-MeO-DMT in different settings.

SeminarNeuroscience

Mechanisms Underlying the Persistence of Cancer-Related Fatigue

Elisabeth G. Vichaya
Baylor University
May 22, 2023

Cancer-related fatigue is a prominent and debilitating side effect of cancer and its treatment. It can develop prior to diagnosis, generally peaks during cancer treatment, and can persist long after treatment completion. Its mechanisms are multifactorial, and its expression is highly variable. Unfortunately, treatment options are limited. Our research uses syngeneic murine models of cancer and cisplatin-based chemotherapy to better understand these mechanisms. Our data indicate that both peripherally and centrally processes may contribute to the developmental of fatigue. These processes include metabolic alterations, mitochondrial dysfunction, pre-cachexia, and inflammation. However, our data has revealed that behavioral fatigue can persist even after the toxicity associated with cancer and its treatment recover. For example, running during cancer treatment attenuates kidney toxicity while also delaying recovery from fatigue-like behavior. Additionally, administration of anesthetics known to disrupt memory consolidation at the time treatment can promote recovery, and treatment-related cues can re-instate fatigue after recovery. Cancer-related fatigue can also promote habitual behavioral patterns, as observed using a devaluation task. We interpret this data to suggest that limit metabolic resources during cancer promote the utilization of habit-based behavioral strategies that serve to maintain fatigue behavior into survivorship. This line of work is exciting as it points us toward novel interventional targets for the treatment of persistent cancer-related fatigue.

SeminarNeuroscience

A specialized role for entorhinal attractor dynamics in combining path integration and landmarks during navigation

Malcolm Campbell
Harvard
Mar 8, 2023

During navigation, animals estimate their position using path integration and landmarks. In a series of two studies, we used virtual reality and electrophysiology to dissect how these inputs combine to generate the brain’s spatial representations. In the first study (Campbell et al., 2018), we focused on the medial entorhinal cortex (MEC) and its set of navigationally-relevant cell types, including grid cells, border cells, and speed cells. We discovered that attractor dynamics could explain an array of initially puzzling MEC responses to virtual reality manipulations. This theoretical framework successfully predicted both MEC grid cell responses to additional virtual reality manipulations, as well as mouse behavior in a virtual path integration task. In the second study (Campbell*, Attinger* et al., 2021), we asked whether these principles generalize to other navigationally-relevant brain regions. We used Neuropixels probes to record thousands of neurons from MEC, primary visual cortex (V1), and retrosplenial cortex (RSC). In contrast to the prevailing view that “everything is everywhere all at once,” we identified a unique population of MEC neurons, overlapping with grid cells, that became active with striking spatial periodicity while head-fixed mice ran on a treadmill in darkness. These neurons exhibited unique cue-integration properties compared to other MEC, V1, or RSC neurons: they remapped more readily in response to conflicts between path integration and landmarks; they coded position prospectively as opposed to retrospectively; they upweighted path integration relative to landmarks in conditions of low visual contrast; and as a population, they exhibited a lower-dimensional activity structure. Based on these results, our current view is that MEC attractor dynamics play a privileged role in resolving conflicts between path integration and landmarks during navigation. Future work should include carefully designed causal manipulations to rigorously test this idea, and expand the theoretical framework to incorporate notions of uncertainty and optimality.

SeminarPsychology

Exploring the Potential of High-Density Data for Neuropsychological Testing with Coregraph

Kim Uittenhove
University of Lausanne
Feb 7, 2023

Coregraph is a tool under development that allows us to collect high-density data patterns during the administration of classic neuropsychological tests such as the Trail Making Test and Clock Drawing Test. These tests are widely used to evaluate cognitive function and screen for neurodegenerative disorders, but traditional methods of data collection only yield sparse information, such as test completion time or error types. By contrast, the high-density data collected with Coregraph may contribute to a better understanding of the cognitive processes involved in executing these tests. In addition, Coregraph may potentially revolutionize the field of cognitive evaluation by aiding in the prediction of cognitive deficits and in the identification of early signs of neurodegenerative disorders such as Alzheimer's dementia. By analyzing high-density graphomotor data through techniques like manual feature engineering and machine learning, we can uncover patterns and relationships that would be otherwise hidden with traditional methods of data analysis. We are currently in the process of determining the most effective methods of feature extraction and feature analysis to develop Coregraph to its full potential.

SeminarNeuroscienceRecording

Versatile treadmill system for measuring locomotion and neural activity in head-fixed mice

Rune Nguyen Rasmussen
University of Copenhagen
Dec 7, 2022

Here, we present a protocol for using a versatile treadmill system to measure locomotion and neural activity at high temporal resolution in head-fixed mice. We first describe the assembly of the treadmill system. We then detail surgical implantation of the headplate on the mouse skull, followed by habituation of mice to locomotion on the treadmill system. The system is compact, movable, and simple to synchronize with other data streams, making it ideal for monitoring brain activity in diverse behavioral frameworks. https://dx.doi.org/10.1016/j.xpro.2022.101701

SeminarNeuroscience

Multi-muscle TMS mapping assessment of the motor cortex reorganization after finger dexterity training

Milana Makarova
HSE University
Jun 8, 2022

It is widely known that motor learning leads to reorganization changes in the motor cortex. Recently, we have shown that using navigated transcranial magnetic stimulation (TMS) allows us to reliably trace interactions among motor cortical representations (MCRs) of different upper limb muscles. Using this approach, we investigate changes in the MCRs after fine finger movement training. Our preliminary results demonstrated that areas of the APB and ADM and their overlaps tended to increase after finger independence training. Considering the behavioral data, hand dexterity increased for both hands, but the amplitudes of voluntary contraction of the muscles for the APB and ADM did not change significantly. The behavioral results correspond with a previously described suggestion that hand strength and hand dexterity are not directly related as well as an increase in overlaps between MCRs of the trained muscles supports the idea that voluntary muscle relaxation is an active physiological process.

SeminarNeuroscience

The Problem of Testimony

Ulrike Hahn
Birkbeck, University of London
May 3, 2022

The talk will detail work drawing on behavioural results, formal analysis, and computational modelling with agent-based simulations to unpack the scale of the challenge humans face when trying to work out and factor in the reliability of their sources. In particular, it is shown how and why this task admits of no easy solution in the context of wider communication networks, and how this will affect the accuracy of our beliefs. The implications of this for the shift in the size and topology of our communication networks through the uncontrolled rise of social media are discussed.

SeminarNeuroscience

Emerging Treatment Options in Psychiatry

Erik Wong
University of British Columbia
Feb 27, 2022

The World Health Organization (WHO) estimates that untreated mental disorders accountfor 13% of the total global burden of disease, and by 2030, depression alone will be the leadingcause of disability around the world – outpacing heart disease, cancer, and HIV. This grim pictureis further compounded by the mental health burden delivered by the coronavirus pandemic.The lack of novel treatment options in psychiatry is restricted by a limited understanding in theneuroscience basis of mental disorders, availability of relevant biomarkers, poor predictability inanimal models, and high failure rates in psychiatric drug development. However, theannouncement in 2019 from the Federal Drug Administration (FDA) for approvals of newinterventions for treatment-resistant depression (intranasal esketamine) and postpartumdepression (i.v. brexanolone), demand critical attention. Novel public-private partnerships indrug discovery, new translational data on co-morbid biology, in particular the ascendance ofpsycho-immunology, have highlighted the arrival of a new frontier in biological psychiatryresearch for depressive disorders.

SeminarNeuroscience

NeurotechRI Kickoff Meeting

NeurotechEU Board of Governors, Mr Stijn Delaure (DG R&I, Unit A3 “R&I Actors and Research Careers”) and Ms Marta Truco Calbet (DG R&I, Unit C.4 "Reforming European R&I and Research Infrastructures''), NeurotechEU Students Society
European Commission, European Research Executive Agency, NeurotechEU Board of Governors, NeurotechEU Students Society
Nov 25, 2021

The digital kickoff of NeurotechRI will take place on the 26th from 13:00 to 16:00 (CET). Come and join us as we discuss our plans for the Graduate School and our research and innovation roadmap! The programme can be downloaded here. Don’t miss out on our Board of Governors presentation of the project and the synergies with NeurotechEU, meet with our keynote speakers from the European Research Executive Agency: Mr Stijn Delaure (DG R&I, Unit A3 “R&I Actors and Research Careers”) and Ms Marta Truco Calbet (DG R&I, Unit C.4 "Reforming European R&I and Research Infrastructures''). Last but not least, the day will finish with a roundtable discussion organised by our students society. The roundtable will be an open space and an opportunity for all students to discuss their needs in education. Registration is open: www.crowdcast.io/e/neurotechri-kickoff

SeminarNeuroscienceRecording

The wonders and complexities of brain microstructure: Enabling biomedical engineering studies combining imaging and models

Daniele Dini
Imperial College London
Nov 22, 2021

Brain microstructure plays a key role in driving the transport of drug molecules directly administered to the brain tissue as in Convection-Enhanced Delivery procedures. This study reports the first systematic attempt to characterize the cytoarchitecture of commissural, long association and projection fiber, namely: the corpus callosum, the fornix and the corona radiata. Ovine samples from three different subjects have been imaged using scanning electron microscope combined with focused ion beam milling. Particular focus has been given to the axons. For each tract, a 3D reconstruction of relatively large volumes (including a significant number of axons) has been performed. Namely, outer axonal ellipticity, outer axonal cross-sectional area and its relative perimeter have been measured. This study [1] provides useful insight into the fibrous organization of the tissue that can be described as composite material presenting elliptical tortuous tubular fibers, leading to a workflow to enable accurate simulations of drug delivery which include well-resolved microstructural features.  As a demonstration of the use of these imaging and reconstruction techniques, our research analyses the hydraulic permeability of two white matter (WM) areas (corpus callosum and fornix) whose three-dimensional microstructure was reconstructed starting from the acquisition of the electron microscopy images. Considering that the white matter structure is mainly composed of elongated and parallel axons we computed the permeability along the parallel and perpendicular directions using computational fluid dynamics [2]. The results show a statistically significant difference between parallel and perpendicular permeability, with a ratio about 2 in both the white matter structures analysed, thus demonstrating their anisotropic behaviour. This is in line with the experimental results obtained using perfusion of brain matter [3]. Moreover, we find a significant difference between permeability in corpus callosum and fornix, which suggests that also the white matter heterogeneity should be considered when modelling drug transport in the brain. Our findings, that demonstrate and quantify the anisotropic and heterogeneous character of the white matter, represent a fundamental contribution not only for drug delivery modelling but also for shedding light on the interstitial transport mechanisms in the extracellular space. These and many other discoveries will be discussed during the talk." "1. https://www.researchsquare.com/article/rs-686577/v1, 2. https://www.pnas.org/content/118/36/e2105328118, 3. https://ieeexplore.ieee.org/abstract/document/9198110

SeminarNeuroscienceRecording

Epigenetic regulation of alternative splicing in the context of cocaine reward

Elizabeth A Heller, PhD
The University of Pennsylvania, Penn Epigenetics Institute, Systems Pharmacology & Translational Therapeutics
Oct 5, 2021

Neuronal alternative splicing is a key gene regulatory mechanism in the brain. However, the spliceosome machinery is insufficient to fully specify splicing complexity. In considering the role of the epigenome in activity-dependent alternative splicing, we and others find the histone modification H3K36me3 to be a putative splicing regulator. In this study, we found that mouse cocaine self-administration caused widespread differential alternative splicing, concomitant with the enrichment of H3K36me3 at differentially spliced junctions. Importantly, only targeted epigenetic editing can distinguish between a direct role of H3K36me3 in splicing and an indirect role via regulation of splice factor expression elsewhere on the genome. We targeted Srsf11, which was both alternatively spliced and H3K36me3 enriched in the brain following cocaine self-administration. Epigenetic editing of H3K36me3 at Srsf11 was sufficient to drive its alternative splicing and enhanced cocaine self-administration, establishing the direct causal relevance of H3K36me3 to alternative splicing of Srsf11 and to reward behavior.

SeminarNeuroscienceRecording

Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses

Willem Wybo
Morrison lab, Forschungszentrum Jülich, Germany
Jun 9, 2021

There is little consensus on the level of spatial complexity at which dendrites operate. On the one hand, emergent evidence indicates that synapses cluster at micrometer spatial scales. On the other hand, most modelling and network studies ignore dendrites altogether. This dichotomy raises an urgent question: what is the smallest relevant spatial scale for understanding dendritic computation? We have developed a method to construct compartmental models at any level of spatial complexity. Through carefully chosen parameter fits, solvable in the least-squares sense, we obtain accurate reduced compartmental models. Thus, we are able to systematically construct passive as well as active dendrite models at varying degrees of spatial complexity. We evaluate which elements of the dendritic computational repertoire are captured by these models. We show that many canonical elements of the dendritic computational repertoire can be reproduced with few compartments. For instance, for a model to behave as a two-layer network, it is sufficient to fit a reduced model at the soma and at locations at the dendritic tips. In the basal dendrites of an L2/3 pyramidal model, we reproduce the backpropagation of somatic action potentials (APs) with a single dendritic compartment at the tip. Further, we obtain the well-known Ca-spike coincidence detection mechanism in L5 Pyramidal cells with as few as eleven compartments, the requirement being that their spacing along the apical trunk supports AP backpropagation. We also investigate whether afferent spatial connectivity motifs admit simplification by ablating targeted branches and grouping affected synapses onto the next proximal dendrite. We find that voltage in the remaining branches is reproduced if temporal conductance fluctuations stay below a limit that depends on the average difference in input resistance between the ablated branches and the next proximal dendrite. Consequently, when the average conductance load on distal synapses is constant, the dendritic tree can be simplified while appropriately decreasing synaptic weights. When the conductance level fluctuates strongly, for instance through a-priori unpredictable fluctuations in NMDA activation, a constant weight rescale factor cannot be found, and the dendrite cannot be simplified. We have created an open source Python toolbox (NEAT - https://neatdend.readthedocs.io/en/latest/) that automatises the simplification process. A NEST implementation of the reduced models, currently under construction, will enable the simulation of few-compartment models in large-scale networks, thus bridging the gap between cellular and network level neuroscience.

SeminarPsychology

Neuroimaging reproducibility - pain points and roadmap for solid and reusable results

Jean-Baptiste Poline
McGill University
Jun 9, 2021

There is a growing body of evidence that reproducibility or replication is low in neuroscience and in neuroimaging in particular, but the factors affecting studies solidity are still generally poorly understood, and the solutions are not clearly exposed to the neuroimaging scientific community. In this talk, I will review the key factors contributing to irreproducible results in neuroimaging specifically in the context of explanatory or prediction studies and propose a series of practical steps to improve the neuroimaging (and neuroscience) results robustness and re-usability.

SeminarNeuroscienceRecording

Analogical reasoning and metaphor processing in autism - Similarities & differences

Kinga Morsanyi
Loughborough University
May 5, 2021

In this talk, I will present the results of two recent systematic reviews and meta-analyses related to analogical reasoning and metaphor processing in autism, together with the results of a study that investigated verbal analogical reasoning and metaphor processing in the same sample of participants. Both metaphors and analogies rely on exploiting similarities, and they necessitate contextual processing. Nevertheless, our findings relating to metaphor processing and analogical reasoning showed distinct patterns. Whereas analogical reasoning emerged as a relative strength in autism, metaphor processing was found to be a relative weakness. Additionally, both meta-analytic studies investigated the relations between the level of intelligence of participants included in the studies, and the effect size of group differences between the autistic and typically developing (TD) samples. These analyses suggested in the case of analogical reasoning that the relative advantage of ASD participants might only be present in the case of individuals with lower levels of intelligence. By contrast, impairments in metaphor processing appeared to be more pronounced in the case of individuals with relatively lower levels of (verbal) intelligence. In our experimental study, we administered both verbal analogies and metaphors to the same sample of high-functioning autistic participants and TD controls. The two groups were matched on age, verbal IQ, working memory and educational background. Our aim was to understand better the similarities and differences between processing analogies and metaphors, and to see whether the advantage in analogical reasoning and disadvantage in metaphor processing is universal in autism.

SeminarNeuroscience

Nr4a1-mediated morphological adaptations in Ventral Pallidal projections to Mediodorsal Thalamus support cocaine intake and relapse-like behaviors

Michel Engeln
Institute of Neurodegenerative Diseases, University of Bordeaux, Bordeaux, France
Mar 18, 2021

Growing evidence suggests the ventral pallidum (VP) is critical for drug intake and seeking behaviors. Receiving dense projections from the nucleus accumbens as well as dopamine inputs from the midbrain, the VP plays a central role in the control of motivated behaviors. Repeated exposure to cocaine is known to alter VP neuronal firing and neurotransmission. Surprisingly, there is limited information on the molecular adaptations occurring in VP neurons following cocaine intake.To provide insights into cocaine-induced transcriptional alterations we performed RNA-sequencing on VP of mice following cocaine self-administration. Gene Ontology analysis pointed toward alterations in dendrite- and spinerelated genes. Subsequent transcriptional regulator analysis identified the transcription factor Nr4a1 as a common regulator for these sets of morphology-related genes.Consistent with the central role of the VP in reward, its neurons project to several key regions associated with cocaine-mediated behaviors. We thus assessed Nr4a1 expression levels in various projection populations.Following cocaine self-administration, VP neurons projecting to the mediodorsal thalamus (MDT) showed significantly increased Nr4a1 levels. To further investigate the role of Nr4a1 in cocaine intake and relapse, we bidirectionally manipulated its expression levels selectively in VP neurons projecting to the MDT. Increasing Nr4a1 levels resulted in enhanced relapse-like behaviors accompanied by a blockage of cocaine-induced spinogenesis.However, decreasing Nr4a1expression levels completely abolished cocaine intake and consequential relapse-like behaviors. Together, our preliminary findings suggest that drug-induced neuronal remodeling in pallido-thalamic circuits is critical for cocaine intake and relapse-like behaviors.

SeminarNeuroscience

Translational upregulation of STXBP1 by non-coding RNAs as an innovative treatment for STXBP1 encephalopathy

Federico Zara & Ganna Balagura
Institute G. Gaslini, University of Genoa
Mar 16, 2021

Developmental and epileptic encephalopathies (DEEs) are a broad spectrum of genetic epilepsies associated with impaired neurological development as a direct consequence of a genetic mutation, in addition to the effect of the frequent epileptic activity on brain. Compelling genetic studies indicate that heterozygous de novo mutations represent the most common underlying genetic mechanism, in accordance with the sporadic presentation of DEE. De novo mutations may exert a loss-of-function (LOF) on the protein by decrementing expression level and/or activity, leading to functional haploinsufficiency. These diseases share several features: severe and frequent refractory seizures, diffusely abnormal background activity on EEG, intellectual disability often profound, and severe consequences on global development. One of major causes of early onset DEE are de novo heterozygous mutations in syntaxin-binding-protein-1 gene STXBP1, which encodes a membrane trafficking protein playing critical role in vesicular docking and fusion. LOF STXBP1 mutations lead to a failure of neurotransmitter secretion from synaptic vesicles. Core clinical features of STXBP1 encephalopathy include early-onset epilepsy with hypsarrhythmic EEG, or burst-suppression pattern, or multifocal epileptiform activity. Seizures are often resistant to standard treatments and patients typically show intellectual disability, mostly severe to profound. Additional neurologic features may include autistic traits, movement disorders (dyskinesia, dystonia, tremor), axial hypotonia, and ataxia, indicating a broader neurologic impairment. Patients with severe neuro-cognitive features but without epilepsy have been reported. Recently, a new class of natural and synthetic non-coding RNAs have been identified, enabling upregulation of protein translation in a gene-specific way (SINEUPs), without any increase in mRNA of the target gene. SINEUPs are translational activators composed by a Binding Domain (BD) that overlaps, in antisense orientation, to the sense protein-coding mRNA, and determines target selection; and an Effector Domain (ED), that is essential for protein synthesis up regulation. SINEUPs have been shown to restore the physiological expression of a protein in case of haploinsufficiency, without driving excessive overexpression out of the physiological range. This technology brings many advantages, as it mainly acts on endogenous target mRNAs produced in situ by the wild-type allele; this action is limited to mRNA under physiological regulation, therefore no off-site effects can be expected in cells and tissues that do not express the target transcript; by acting only on a posttranscriptional level, SINEUPs do not trigger hereditable genome editing. After bioinformatic analysis of the promoter region of interest, we designed SINEUPs with 3 different BD for STXBP1. Human neurons from iPSCs were treated and STXBP1 levels showed a 1.5-fold increase compared to the Negative control. RNA levels of STXBP1 after the administration of SINEUPs remained stable as expected. These preliminary results proved the SINEUPs potential to specifically increase the protein levels without impacting on the genome. This is an extremely flexible approach to target many developmental and epileptic encephalopathies caused by haploinsufficiency, and therefore to address these diseases in a more tailored and radical way.

SeminarNeuroscienceRecording

Restless engrams: the origin of continually reconfiguring neural representations

Timothy O'Leary
University of Cambridge
Mar 4, 2021

During learning, populations of neurons alter their connectivity and activity patterns, enabling the brain to construct a model of the external world. Conventional wisdom holds that the durability of a such a model is reflected in the stability of neural responses and the stability of synaptic connections that form memory engrams. However, recent experimental findings have challenged this idea, revealing that neural population activity in circuits involved in sensory perception, motor planning and spatial memory continually change over time during familiar behavioural tasks. This continual change suggests significant redundancy in neural representations, with many circuit configurations providing equivalent function. I will describe recent work that explores the consequences of such redundancy for learning and for task representation. Despite large changes in neural activity, we find cortical responses in sensorimotor tasks admit a relatively stable readout at the population level. Furthermore, we find that redundancy in circuit connectivity can make a task easier to learn and compensate for deficiencies in biological learning rules. Finally, if neuronal connections are subject to an unavoidable level of turnover, the level of plasticity required to optimally maintain a memory is generally lower than the total change due to turnover itself, predicting continual reconfiguration of an engram.

SeminarNeuroscience

The anterior insular cortex in the rat exerts an inhibitory influence over the loss of control of heroin intake and subsequent propensity to relapse

Dhaval Joshi
University of Cambridge, Department of Psychology
Mar 2, 2021

The anterior insular cortex (AIC) has been implicated in addictive behaviour, including the loss of control over drug intake, craving and the propensity to relapse. Evidence suggests that the influence of the AIC on drug-related behaviours is complex as in rats exposed to extended access to cocaine self-administration, the AIC was shown to exert a state-dependent, bidirectional influence on the development and expression of loss of control over drug intake, facilitating the latter but impairing the former. However, it is unclear whether this influence of the AIC is confined to stimulant drugs that have marked peripheral sympathomimetic and anxiogenic effects or whether it extends to other addictive drugs, such as opiates, that lack overt acute aversive peripheral effects. We investigated in outbred rats the effects of bilateral excitotoxic lesions of AIC induced both prior to or after long-term exposure to extended access heroin self-administration, on the development and maintenance of escalated heroin intake and the subsequent vulnerability to relapse following abstinence. Compared to sham surgeries, pre-exposure AIC lesions had no effect on the development of loss of control over heroin intake, but lesions made after a history of escalated heroin intake potentiated escalation and also enhanced responding at relapse. These data show that the AIC inhibits or limits the loss of control over heroin intake and propensity to relapse, in marked contrast to its influence on the loss of control over cocaine intake.

SeminarNeuroscience

Gene Therapy for Neurodegeneration

Ronald G. Crystal
Cornell Research
Jan 31, 2021

One of the major challenges in developing therapeutics for the neurodegenerative disorders is the blood-brain barrier, limiting the availability of systemically administered therapies such as recombinant proteins or monoclonal antibodies from reaching the brain. Direct central nervous system (CNS) gene therapy using adeno-associated virus vectors expressing a therapeutic protein, monoclonal antibody or inhibiting RNA-coding sequences has two characteristics ideal for therapy of neurodegenerative disorders: circumventing the blood-brain barrier by directly expressing the therapy in the brain and the ability to provide persistent therapy with only a single administration. There are several critical parameters relevant to successful CNS gene therapy, including choice of vector, design of the gene to be expressed, delivery/route of administration, dose and anti-vector immune responses. The presentation will focus on these issues, the current status of clinical trials of gene therapy for neurodegeneration and specific challenges that will need to be overcome to ensure the success of these therapies.

SeminarNeuroscienceRecording

What about antibiotics for the treatment of the dyskinesia induced by L-DOPA?

Elaine Del-Bel
Professor of Physiology,Department of Morphology, Physiology and Basic Pathology, School of Dentistry, Ribeirão Preto (FORP), University of São Paulo.
Dec 13, 2020

L-DOPA-induced dyskinesia is a debilitating adverse effect of treating Parkinson’s disease with this drug. New therapeutic approaches that prevent or attenuate this side effect is clearly needed. Wistar adult male rats submitted to 6-hydroxydopamine-induced unilateral medial forebrain bundle lesions were treated with L-DOPA (oral or subcutaneous, 20 mg kg-1) once a day for 14 days. After this period, we tested if doxycycline (40 mg kg-1, intraperitoneal, a subantimicrobial dose) and COL-3 (50 and 100 nmol, intracerebroventricular) could reverse LID. In an additional experiment, doxycycline was also administered repeatedly with L-DOPA to verify if it would prevent LID development. A single injection of doxycycline or COL-3 together with L-DOPA attenuated the dyskinesia. Co-treatment with doxycycline from the first day of L-DOPA suppressed the onset of dyskinesia. The improved motor responses to L-DOPA remained intact in the presence of doxycycline or COL-3, indicating the preservation of L-DOPA-produced benefits. Doxycycline treatment was associated with decreased immunoreactivity of FosB, cyclooxygenase-2, the astroglial protein GFAP and the microglial protein OX-42 which are elevated in the basal ganglia of rats exhibiting dyskinesia. Doxycycline also decreased metalloproteinase-2/-9 activity, metalloproteinase-3 expression and reactive oxygen species production. Metalloproteinase-2/-9 activity and production of reactive oxygen species in the basal ganglia of dyskinetic rats showed a significant correlation with the intensity of dyskinesia. The present study demonstrates the anti-dyskinetic potential of doxycycline and its analog compound COL-3 in hemiparkinsonian rats. Given the long-established and safe clinical use of doxycycline, this study suggests that these drugs might be tested to reduce or to prevent L-DOPA-induced dyskinesia in Parkinson’s patients.

SeminarNeuroscienceRecording

Multitask performance humans and deep neural networks

Christopher Summerfield
University of Oxford
Nov 24, 2020

Humans and other primates exhibit rich and versatile behaviour, switching nimbly between tasks as the environmental context requires. I will discuss the neural coding patterns that make this possible in humans and deep networks. First, using deep network simulations, I will characterise two distinct solutions to task acquisition (“lazy” and “rich” learning) which trade off learning speed for robustness, and depend on the initial weights scale and network sparsity. I will chart the predictions of these two schemes for a context-dependent decision-making task, showing that the rich solution is to project task representations onto orthogonal planes on a low-dimensional embedding space. Using behavioural testing and functional neuroimaging in humans, we observe BOLD signals in human prefrontal cortex whose dimensionality and neural geometry are consistent with the rich learning regime. Next, I will discuss the problem of continual learning, showing that behaviourally, humans (unlike vanilla neural networks) learn more effectively when conditions are blocked than interleaved. I will show how this counterintuitive pattern of behaviour can be recreated in neural networks by assuming that information is normalised and temporally clustered (via Hebbian learning) alongside supervised training. Together, this work offers a picture of how humans learn to partition knowledge in the service of structured behaviour, and offers a roadmap for building neural networks that adopt similar principles in the service of multitask learning. This is work with Andrew Saxe, Timo Flesch, David Nagy, and others.

SeminarNeuroscience

Ex vivo gene therapy for epilepsy. Seizure-suppressant and neuroprotective effects of encapsulated GDNF-producing cells

Michele Simonato
Università Vita-Salute San Raffaele
Nov 3, 2020

A variety of pharmacological treatments exist for patients suffering from focal seizures, but systemically administered drugs offer only symptomatic relief and frequently cause unwanted side effects. Moreover, available drugs are ineffective in one third of the patients. Thus, developing more targeted and effective treatment strategies is highly warranted. Neurotrophic factors are candidates for treating epilepsy, but their development has been hampered by difficulties in achieving stable and targeted delivery of efficacious concentrations within the brain. We have developed an implantable cell encapsulation system that delivers high and consistent levels of neurotrophic molecules directly to a specific brain region. The potential of this approach has been tested by delivering glial cell line-derived neurotrophic factor (GDNF) to the hippocampus of epileptic rats. In vivo studies demonstrated that these intrahippocampal implants continue to secrete GDNF and produce high hippocampal GDNF tissue levels in a long-lasting manner. Identical implants rapidly and greatly reduced seizure frequency in the pilocarpine model. This effect increased in magnitude over 3 months, ultimately leading to a reduction of spontaneous seizures by more than 90%. Importantly, these effects were accompanied by improvements in cognition and anxiety, and by the normalization of many histological alterations that are associated with chronic epilepsy. In addition, the antiseizure effect persisted even after device removal. Finally, by establishing a unilateral epileptic focus using the intrahippocampal kainate model, we found that delivery of GDNF exclusively within the focus suppressed already established spontaneous recurrent seizures. Together, these results support the concept that the implantation of encapsulated GDNF-secreting cells can deliver GDNF in a sustained, targeted, and efficacious manner. These findings may form the basis for clinical translation of this approach.

SeminarNeuroscience

Emergent scientists discuss Alzheimer's disease

Christiana Bjørkli, Siddharth Ramanan
Norwegian University of Science and Technology, University of Cambridge
Oct 19, 2020

This seminar is part of our “Emergent Scientists” series, an initiative that provides a platform for scientists at the critical PhD/postdoc transition period to share their work with a broad audience and network. Summary: These talks cover Alzheimer’s disease (AD) research in both mice and humans. Christiana will discuss in particular the translational aspects of applying mouse work to humans and the importance of timing in disease pathology and intervention (e.g. timing between AD biomarkers vs. symptom onset, timing of therapy, etc.). Siddharth will discuss a rare variant of Alzheimer’s disease called “Logopenic Progressive Aphasia”, which presents with temporo-parietal atrophy yet relative sparing of hippocampal circuitry. Siddharth will discuss how, despite the unusual anatomical basis underlying this AD variant, degeneration of the angular gyrus in the left inferior parietal lobule contributes to memory deficits similar to those of typical amnesic Alzheimer’s disease. Christiana’s abstract: Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder that causes severe deterioration of memory, cognition, behavior, and the ability to perform daily activities. The disease is characterized by the accumulation of two proteins in fibrillar form; Amyloid-β forms fibrils that accumulate as extracellular plaques while tau fibrils form intracellular tangles. Here we aim to translate findings from a commonly used AD mouse model to AD patients. Here we initiate and chronically inhibit neuropathology in lateral entorhinal cortex (LEC) layer two neurons in an AD mouse model. This is achieved by over-expressing P301L tau virally and chronically activating hM4Di DREADDs intracranially using the ligand dechloroclozapine. Biomarkers in cerebrospinal fluid (CSF) is measured longitudinally in the model using microdialysis, and we use this same system to intracranially administer drugs aimed at halting AD-related neuropathology. The models are additionally tested in a novel contextual memory task. Preliminary findings indicate that viral injections of P301L tau into LEC layer two reveal direct projections between this region and the outer molecular layer of dentate gyrus and the rest of hippocampus. Additionally, phosphorylated tau co-localize with ‘starter cells’ and appear to spread from the injection site. Preliminary microdialysis results suggest that the concentrations of CSF amyloid-β and tau proteins mirror changes observed along the disease cascade in patients. The disease-modifying drugs appear to halt neuropathological development in this preclincial model. These findings will lead to a novel platform for translational AD research, linking the extensive research done in rodents to clinical applications. Siddharth’s abstract: A distributed brain network supports our ability to remember past events. The parietal cortex is a critical member of this network, yet, its exact contributions to episodic remembering remain unclear. Neurodegenerative syndromes affecting the posterior neocortex offer a unique opportunity to understand the importance and role of parietal regions to episodic memory. In this talk, I introduce and explore the rare neurodegenerative syndrome of Logopenic Progressive Aphasia (LPA), an aphasic variant of Alzheimer’s disease presenting with early, left-lateralized temporo-parietal atrophy, amidst relatively spared hippocampal integrity. I then discuss two key studies from my recent Ph.D. work showcasing pervasive episodic and autobiographical memory dysfunction in LPA, to a level comparable to typical, amnesic Alzheimer’s disease. Using multimodal neuroimaging, I demonstrate how degeneration of the angular gyrus in the left inferior parietal lobule, and its structural connections to the hippocampus, contribute to amnesic profiles in this syndrome. I finally evaluate these findings in the context of memory profiles in other posterior cortical neurodegenerative syndromes as well as recent theoretical models underscoring the importance of the parietal cortex in the integration and representation of episodic contextual information.

SeminarNeuroscienceRecording

Targeting the Endocannabinoid System for Management of Chemotherapy, HIV and Antiretroviral-Induced Neuropathic Pain

Willias Masocha
Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait
Sep 23, 2020

Chemotherapeutic drugs (used for treating cancer), HIV infection and antiretroviral therapy (ART) can independently cause difficult-to-manage painful neuropathy. Paclitaxel, a chemotherapeutic drug, for example is associated with high incidence of peripheral neuropathy, around 71% of the patients of which 27% of these develop neuropathic pain. Use of cannabis or phytocannabinoids has been reported to improve pain measures in patients with neuropathic pain, including painful HIV-associated sensory neuropathy and cancer pain. Phytocannabinoids and endocannabinoids, such as anandamide and 2-arachidonoylglycerol (2-AG), produce their effects via cannabinoid (CB) receptors, which are present both in the periphery and central nervous system. Endocannabinoids are synthesized in an “on demand” fashion and are degraded by various enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL). Various studies, including those from our group, suggest that there are changes in gene and protein expression of endocannabinoid molecules during chemotherapy-induced neuropathic pain (CINP), HIV and antiretroviral-induced neuropathic pain. Analysis of endocannabinoid molecule expression in the brain, spinal cord and paw skin using LC-MS/MS show that there is a specific deficiency of the endocannabinoids 2-AG and/or anandamide in the periphery during CINP. Various drugs including endocannabinoids, cannabidiol, inhibitors of FAAH and MGL, CB receptor agonists, desipramine and coadministered indomethacin plus minocycline have been found to either prevent the development and/or attenuate established CINP, HIV and antiretroviral-induced neuropathic pain in a CB receptor-dependent manner. The results available suggest that targeting the endocannabinoid system for prevention and treatment of CINP, HIV-associated neuropathic pain and antiretroviral-induced neuropathic pain is a plausible therapeutic option.

SeminarNeuroscienceRecording

A New Approach to the Hard Problem of Consciousness

Mark Solms
Neuroscience Institute, University of Cape Town
Jul 28, 2020

David Chalmers’s (1995) hard problem famously states: “It is widely agreed that experience arises from a physical basis, but we have no good explanation of why and how it so arises.” Thomas Nagel (1974) wrote something similar: “If we acknowledge that a physical theory of mind must account for the subjective character of experience, we must admit that no presently available conception gives us a clue about how this could be done.” This presentation will point the way towards the long-sought “good explanation” -- or at least it will provide “a clue”. I will make three points: (1) It is unfortunate that cognitive science took vision as its model example when looking for a ‘neural correlate of consciousness’ because cortical vision (like most cognitive processes) is not intrinsically conscious. There is not necessarily ‘something it is like’ to see. (2) Affective feeling, by contrast, is conscious by definition. You cannot feel something without feeling it. Moreover, affective feeling, generated in the upper brainstem, is the foundational form of consciousness: prerequisite for all the higher cognitive forms. (3) The functional mechanism of feeling explains why and how it cannot go on ‘in the dark’, free of any inner feel. Affect enables the organism to monitor deviations from its expected self-states in uncertain situations and thereby frees homeostasis from the limitations of automatism. As Nagel says, “An organism has conscious mental states if and only if there is something that it is like to be that organism—something it is like for the organism.” Affect literally constitutes the sentient subject.

SeminarNeuroscience

Cortical population coding of consumption decisions

Donald B. Katz
Brandeis University
Jun 29, 2020

The moment that a tasty substance enters an animal’s mouth, the clock starts ticking. Taste information transduced on the tongue signals whether a potential food will nourish or poison, and the animal must therefore use this information quickly if it is to decide whether the food should be swallowed or expelled. The system tasked with computing this important decision is rife with cross-talk and feedback—circuitry that all but ensures dynamics and between-neuron coupling in neural responses to tastes. In fact, cortical taste responses, rather than simply reporting individual taste identities, do contain characterizable dynamics: taste-driven firing first reflects the substance’s presence on the tongue, and then broadly codes taste quality, and then shifts again to correlate with the taste’s current palatability—the basis of consumption decisions—all across the 1-1.5 seconds after taste administration. Ensemble analyses reveal the onset of palatability-related firing to be a sudden, nonlinear transition happening in many neurons simultaneously, such that it can be reliably detected in single trials. This transition faithfully predicts both the nature and timing of consumption behaviours, despite the huge trial-to-trial variability in both; furthermore, perturbations of this transition interfere with production of the behaviours. These results demonstrate the specific importance of ensemble dynamics in the generation of behaviour, and reveal the taste system to be akin to a range of other integrated sensorimotor systems.

SeminarNeuroscienceRecording

Neural Stem Cell Lineage Progression in Developing Cerebral Cortex

Simon Hippenmeyer
Institute of Science and Technology, Austria
Jun 14, 2020

The concerted production of the correct number and diversity of neurons and glia by neural stem cells is essential for intricate neural circuit assembly. In the developing cerebral cortex, radial glia progenitors (RGPs) are responsible for producing all neocortical neurons and certain glia lineages. We recently performed a clonal analysis by exploiting the genetic MADM (Mosaic Analysis with Double Markers) technology and discovered a high degree of non-stochasticity and thus deterministic mode of RGP behaviour. However, the cellular and molecular mechanisms controlling RGP lineage progression remain unknown. To this end we use quantitative MADM-based genetic paradigms at single cell resolution to define the cell-autonomous functions of signaling pathways controlling cortical neuron/glia genesis and postnatal stem cell behaviour in health and disease. Here I will outline our current understanding of the mechanistic framework instructing neural stem cell lineage progression and discuss new data about the role of genomic imprinting – an epigenetic phenomenon - in cortical development.

SeminarNeuroscienceRecording

Tips of MRI Data Acquisition at CCBBI

Xiangrui Li
Ohio State University
Apr 23, 2020

MRI data quality is crucial to the result. This workshop talks some aspects we need to pay attention during the data acquisition, including FoV/slice brain coverage, synchronization between image acquisition and stimulus presentation, instruction to participant, real time quality monitoring, the usage of physiological data. Prior to the meeting, we are collecting questions for Xiangrui on anything related to mri protocol/parameters: https://www.tricider.com/admin/2YW93TsWZJ3/2DBkJUoE5Ot

ePoster

Investigating effort and time sensitivities in rodents performing a treadmill-based foraging task

COSYNE 2022

ePoster

Investigating effort and time sensitivities in rodents performing a treadmill-based foraging task

COSYNE 2022

ePoster

Administration of Enterococcus faecium L-3 reduces disease severity in EAE model in rats by modulating microbiota composition, gut micromorphology, and immune function

Alexander Trofimov, Elena Tarasova, Anna Matsulevich, Nadezhda Grefner, Maria Serebryakova, Igor Kudryavtsev, Elena Ermolenko, Irina Abdurasulova

FENS Forum 2024

ePoster

Administration of a TNF receptor 2 agonist improves neuropathology and cognitive functions in an Alzheimer’s disease model

Natalia Ortí Casañ, Harald Wajant, H. Bea Kuiperij, Marcel M Verbeek, Peter P De Deyn, Petrus JW Naude, Ulrich L M Eisel

FENS Forum 2024

ePoster

Antioxidant effect of combined administration of metformin and propionate in a rat model of type 2 diabetes mellitus

Yuliia Osadchu, Larysa Natrus, Yuliia Klys, Timm Westhoff, Nina Babel, Moritz Anft

FENS Forum 2024

ePoster

Assessment of neurorestorative properties of intranasally administered colostrum-derived exosomes in the periventricular leukomalacia model

Serife Beyza Türe, Ceren Perihan Gonul, Coskun Armagan, Yusuf Guducu, Bora Tastan, Funda Erdogan, Sermin Genc

FENS Forum 2024

ePoster

An automated group-housed oral fentanyl self-administration method in mice

Noa Perez-Rivlin, Idit Marsh‑Yvgi1, Yonatan Fatal, Anna Terem, Hagit Turm, Yavin Shaham, Ami Citri

FENS Forum 2024

ePoster

Behavioral, molecular and cellular effects of low-dose CBD administration in a chronic stress-induced major depression mouse model

Sara Borràs Pernas, Anna Sancho-Balsells, Daniel Del Toro, Albert Giralt

FENS Forum 2024

ePoster

Changes in autonomic nervous system function following administration of probiotics in mild Alzheimer’s patients

Stella Angeli, Ioanna Kousiappa, Stelios Georgiades, Savvas Papacostas, Andreas Koupparis, Yiolanda Christou, Archontia Adamou, Benson Botchway, George Loucaides, Gavriella Alexandrou, Stavros Bashiardes, Andreas Hadjisavvas, Michail Panagiotidis, Aleksandar Jovanovic, Nicoletta Nicolaou

FENS Forum 2024

ePoster

Changes in hippocampal volume following intravenous ketamine administration in healthy individuals

Samantha Graf, Gregor Dörl, Christian Milz, Maximilian Kathofer, Peter Stöhrmann, Benjamin Eggerstorfer, Clemens Schmidt, David Gomola, Elisa Briem, Gabriel Schlosser, Rupert Lanzenberger, Julia Crone, Marie Spies, Benjamin Spurny-Dworak

FENS Forum 2024

ePoster

Changes in neurotransmitter activity in septo-hippocampal network in naturally aged rats and a rat model of aging induced by D-galactose administration: Relationship with memory impairment

Ekaterine Kipiani, Maia Burjanadze, Gela Beselia

FENS Forum 2024

ePoster

Chronic corticosterone administration and decision-making in female mice in an operant mouse gambling task

Stéphanie Cramoisy, Lidia Cabeza, Bahrie Ramadan, Christophe Houdayer, Emmanuel Haffen, Fanchon Bourasset, Yvan Peterschmitt

FENS Forum 2024

ePoster

Cortico-subcortical dysconnectivity following opioid administration correlates with analgesia in the awake mouse brain

Jean-Charles Mariani, Samuel Diebolt, Laurianne Beynac, Renata Santos, Stephan Schulz, Thomas Deffieux, Mickael Tanter, Zsolt Lenkei, Kliewer Andrea

FENS Forum 2024

ePoster

Δ9-Tetrahydrocannabinol modulates addictive behaviour induced by saturated and unsaturated high-fat diets in an animal model of operant self-administration

María Roca, Ana Belén Sanz-Martos, Emilio Ambrosio, Nuria Del Olmo

FENS Forum 2024

ePoster

Different mechanisms underlie compulsive alcohol self-administration in male and female rats

Esi Domi, Sanne Toivainen, Li Xu, Francesco Gobbo, Andrea Della Valle, Andrea Coppola, Markus Heilig

FENS Forum 2024

ePoster

Disruption of treadmill running by harmaline and cannabinoid agonist in marker-based 3D motion capture of mice

Bogna Ignatowska-Jankowska, Tara Turkki, Lakshmipriya Swaminathan, Marylka Yoe Uusisaari

FENS Forum 2024

ePoster

Effects of VEGF and BDNF administration on KCC2 levels in axotomized extraocular motoneurons

Jaime Capilla-López, Rosendo G. Hernández, Génova Carrero-Rojas, Paula M. Calvo, Francisco J. Alvarez, Rosa R. de la Cruz, Angel M. Pastor

FENS Forum 2024

ePoster

Intranasal CRHR2 agonist administration may affect negative outcome of PTSD in animal model

Andrej Tillinger, Alexandra Zvozilová, Mojmír Mach, Jana Osacká

FENS Forum 2024

ePoster

Metformin administration mitigates early life stress-induced disruptions in hippocampal neurogenesis

Ekin Baysal, İrem İnanç, Deniz Billur, Esra Erdemli

FENS Forum 2024

ePoster

The modulatory effects of probiotic administration during pregnancy on offspring neurodevelopmental outcomes under prenatal stress conditions

Mara Ionescu, Clara Deady, Lars Wilmes, Patrick Fitzgerald, Gerard Clarke, Ana-Maria Zagrean, Siobhain O'Mahony

FENS Forum 2024

ePoster

Neuroprotective effects of maternal bovine lactoferrin administration associated with hypothermia following brain hypoxia-ischemia in rats

Eduardo Sanches, Yohan van de Looij, Dini Ho, Chloé Canonne, Stéphane Sizonenko

FENS Forum 2024

ePoster

Precise spatiotemporal photorelease of a systemically administered caged nicotine agonist in freely moving mice

Nicolas Guyon, Joachim Jehl, Sabrina Djillali Bloufa, Yasmine Layadi, Nelson Rebola, Philippe Faure, Graham Ellis-Davies, Alexandre Mourot

FENS Forum 2024

ePoster

Role of TLR4 pathway in the prefrontal cortex following acute and chronic administration of morphine and its withdrawal syndrome

Victoria Gómez-Murcia, Aurelio Franco, Francisco Fernandez-Gomez, Maria Victoria Milanes, Cristina Nuñez

FENS Forum 2024

ePoster

Sex-specific effect of perinatal mirtazapine administration and pregestational stress on the excitability of mesolimbic dopamine neurons in rats

Ruslan Paliokha, Daniil Grinchii, Stanislava Bukatova, Roman Dekhtiarenko, Talah Khoury, Michal Dubovicky, Lubica Lacinova, Dremencov Eliyahu

FENS Forum 2024

ePoster

Single administration of focused ultrasound-mediated blood-brain barrier opening is antidepressant with Claudin-5 remodeling

Moshe Willner, Briana K. Chen, Rebecca L. Noel, Alec J. Batts, Alessia Mastrodonato, Michelle Jin, Robin Ji, Louise C. Matthews, Fotis Tsitsos, Daniella Jimenez, Samantha L. Gorman, Clay O. Lacefield, Elisa E. Konofagou, Christine A. Denny

FENS Forum 2024

ePoster

Soma-targeted GECI constructs for intracerebral or intravenous administration, including jGCaMP8, NEMO, and eGCaMP constructs

Sverre Grødem, Ingeborg Nymoen, Guro H. Vatne, Fredrik S. Rogge, Valgerdur Björnsdottir, David G. Hildebrand, Andre Berndt, Kristian Lensjø, Marianne Fyhn

FENS Forum 2024

ePoster

Subchronic administration of the antidiabetic drug metformin mitigates cognitive impairments in a mouse model of type 2 diabetes mellitus

Edoardo Pisa, Martina Presta, Angela Maria Ottomana, Simone Macrì

FENS Forum 2024

ePoster

Synergistic effects of intranasally administered GALR2 and Y1R agonists on cognitive and mood-related behaviors in adult rats: Implications for neurodegenerative and mood disorders

Manuel Narvaez Pelaez, Isabel Moreno Madrid, Jose Carlos Arrabal Gómez, Pedro Serrano castro, Estela Diaz Sanchez, Jose Erik Alvarez Contino, Miguel Angel Barbancho Fernández, Jose Andrés Sánchez Pérez, Encarnación Blanco Reina, Kjell Fuxe, Dasiel O. Borroto Escuela, Natalia García Casares

FENS Forum 2024

ePoster

Therapeutic administration of the Borna virus X protein by a viral vector AAV10 in a mouse model of ALS

Jeflie Tournezy, Alexis Chevalier, Julien Bourel, Loan Samalens, Anna Saint-Jean, Stéphanie Astord, Maria Grazia Biferi, Stéphane Oliet, Gwendal Le Masson, Stéphanie Chevallier

FENS Forum 2024

ePoster

Western diet administration in aged mice results in sex-dependent cognitive and metabolic dysfunction: Preventive role of rosmarinic acid

Letizia Giona, Chiara Musillo, Michael Ristow, Kim Zarse, Karsten Siems, Sabrina Tait, Francesca Cirulli, Alessandra Berry

FENS Forum 2024