Analogical Mapping
analogical mapping
Navigating Increasing Levels of Relational Complexity: Perceptual, Analogical, and System Mappings
Relational thinking involves comparing abstract relationships between mental representations that vary in complexity; however, this complexity is rarely made explicit during everyday comparisons. This study explored how people naturally navigate relational complexity and interference using a novel relational match-to-sample (RMTS) task with both minimal and relationally directed instruction to observe changes in performance across three levels of relational complexity: perceptual, analogy, and system mappings. Individual working memory and relational abilities were examined to understand RMTS performance and susceptibility to interfering relational structures. Trials were presented without practice across four blocks and participants received feedback after each attempt to guide learning. Experiment 1 instructed participants to select the target that best matched the sample, while Experiment 2 additionally directed participants’ attention to same and different relations. Participants in Experiment 2 demonstrated improved performance when solving analogical mappings, suggesting that directing attention to relational characteristics affected behavior. Higher performing participants—those above chance performance on the final block of system mappings—solved more analogical RMTS problems and had greater visuospatial working memory, abstraction, verbal analogy, and scene analogy scores compared to lower performers. Lower performers were less dynamic in their performance across blocks and demonstrated negative relationships between analogy and system mapping accuracy, suggesting increased interference between these relational structures. Participant performance on RMTS problems did not change monotonically with relational complexity, suggesting that increases in relational complexity places nonlinear demands on working memory. We argue that competing relational information causes additional interference, especially in individuals with lower executive function abilities.
Children’s inference of verb meanings: Inductive, analogical and abductive inference
Children need inference in order to learn the meanings of words. They must infer the referent from the situation in which a target word is said. Furthermore, to be able to use the word in other situations, they also need to infer what other referents the word can be generalized to. As verbs refer to relations between arguments, verb learning requires relational analogical inference, something which is challenging to young children. To overcome this difficulty, young children recruit a diverse range of cues in their inference of verb meanings, including, but not limited to, syntactic cues and social and pragmatic cues as well as statistical cues. They also utilize perceptual similarity (object similarity) in progressive alignment to extract relational verb meanings and further to gain insights about relational verb meanings. However, just having a list of these cues is not useful: the cues must be selected, combined, and coordinated to produce the optimal interpretation in a particular context. This process involves abductive reasoning, similar to what scientists do to form hypotheses from a range of facts or evidence. In this talk, I discuss how children use a chain of inferences to learn meanings of verbs. I consider not only the process of analogical mapping and progressive alignment, but also how children use abductive inference to find the source of analogy and gain insights into the general principles underlying verb learning. I also present recent findings from my laboratory that show that prelinguistic human infants use a rudimentary form of abductive reasoning, which enables the first step of word learning.
Implementing structure mapping as a prior in deep learning models for abstract reasoning
Building conceptual abstractions from sensory information and then reasoning about them is central to human intelligence. Abstract reasoning both relies on, and is facilitated by, our ability to make analogies about concepts from known domains to novel domains. Structure Mapping Theory of human analogical reasoning posits that analogical mappings rely on (higher-order) relations and not on the sensory content of the domain. This enables humans to reason systematically about novel domains, a problem with which machine learning (ML) models tend to struggle. We introduce a two-stage neural net framework, which we label Neural Structure Mapping (NSM), to learn visual analogies from Raven's Progressive Matrices, an abstract visual reasoning test of fluid intelligence. Our framework uses (1) a multi-task visual relationship encoder to extract constituent concepts from raw visual input in the source domain, and (2) a neural module net analogy inference engine to reason compositionally about the inferred relation in the target domain. Our NSM approach (a) isolates the relational structure from the source domain with high accuracy, and (b) successfully utilizes this structure for analogical reasoning in the target domain.
Zero-shot visual reasoning with probabilistic analogical mapping
There has been a recent surge of interest in the question of whether and how deep learning algorithms might be capable of abstract reasoning, much of which has centered around datasets based on Raven’s Progressive Matrices (RPM), a visual analogy problem set commonly employed to assess fluid intelligence. This has led to the development of algorithms that are capable of solving RPM-like problems directly from pixel-level inputs. However, these algorithms require extensive direct training on analogy problems, and typically generalize poorly to novel problem types. This is in stark contrast to human reasoners, who are capable of solving RPM and other analogy problems zero-shot — that is, with no direct training on those problems. Indeed, it’s this capacity for zero-shot reasoning about novel problem types, i.e. fluid intelligence, that RPM was originally designed to measure. I will present some results from our recent efforts to model this capacity for zero-shot reasoning, based on an extension of a recently proposed approach to analogical mapping we refer to as Probabilistic Analogical Mapping (PAM). Our RPM model uses deep learning to extract attributed graph representations from pixel-level inputs, and then performs alignment of objects between source and target analogs using gradient descent to optimize a graph-matching objective. This extended version of PAM features a number of new capabilities that underscore the flexibility of the overall approach, including 1) the capacity to discover solutions that emphasize either object similarity or relation similarity, based on the demands of a given problem, 2) the ability to extract a schema representing the overall abstract pattern that characterizes a problem, and 3) the ability to directly infer the answer to a problem, rather than relying on a set of possible answer choices. This work suggests that PAM is a promising framework for modeling human zero-shot reasoning.
Probabilistic Analogical Mapping with Semantic Relation Networks
Hongjing Lu will present a new computational model of Probabilistic Analogical Mapping (PAM, in collaboration with Nick Ichien and Keith Holyoak) that finds systematic correspondences between inputs generated by machine learning. The model adopts a Bayesian framework for probabilistic graph matching, operating on semantic relation networks constructed from distributed representations of individual concepts (word embeddings created by Word2vec) and of relations between concepts (created by our BART model). We have used PAM to simulate a broad range of phenomena involving analogical mapping by both adults and children. Our approach demonstrates that human-like analogical mapping can emerge from comparison mechanisms applied to rich semantic representations of individual concepts and relations. More details can be found https://arxiv.org/ftp/arxiv/papers/2103/2103.16704.pdf