Antiepileptic Drugs
antiepileptic drugs
Mechanistic insights from a mouse model of HCN1 developmental epileptic encephalopathy
Pathogenic variants in HCN1 are associated with severe developmental and epileptic encephalopathies (DEE). We have engineered the Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse which is a homolog of the de novo HCN1 M305L recurrent pathogenic variant. The mouse recapitulates the phenotypic features of patients including having spontaneous seizures and a learning deficit. In this talk I will present experimental work that probes the molecular and cellular mechanisms underlying hyper-excitability in the mouse model. This will include testing the efficacy of currently available antiepileptic drugs and a novel precision medicine approach. I will also briefly touch on how disease biology can give insights into the biophysical properties of HCN channels.
Mechanisms and precision therapies in genetic epilepsies
Large scale genetic studies and associated functional investigations have tremendously augmented our knowledge about the mechanisms underlying epileptic seizures, and sometimes also accompanying developmental problems. Pharmacotherapy of the epilepsies is routinely guided by trial and error, since predictors for a response to specific antiepileptic drugs are largely missing. The recent advances in the field of genetic epilepsies now offer an increasing amount of either well fitting established or new re-purposing therapies for genetic epilepsy syndromes based on understanding of the pathophysiological principles. Examples are provided by variants in ion channel or transporter encoding genes which cause a broad spectrum of epilepsy syndromes of variable severity and onset, (1) the ketogenic diet for glucose transporter defects of the blood-brain barrier, (2) Na+ channel blockers (e.g. carbamazepine) for gain-of-function Na+ channel mutations and avoidance of those drugs for loss-of-function mutations, and (3) specific K+ channel blockers for mutations with a gain-of-function defect in respective K+ channels. I will focus in my talk on the latter two including the underlying mechanisms, their relation to clinical phenotypes and possible therapeutic implications. In conclusion, genetic and mechanistic studies offer promising tools to predict therapeutic effects in rare epilepsies.
Behavioral and neurotransmitter changes on antiepileptic drugs treatment in the zebrafish pentylenetetrazol-induced seizure model
FENS Forum 2024