Astrocyte
astrocyte
Dr Shuzo Sakata
A 3-year postdoctoral research associate position is available to work with Dr Shuzo Sakata at University of Strathclyde in Glasgow, UK. This position is funded by the Medical Research Council (MRC). Our group has been investigating state-dependent and cell type-specific information processing in the brain by combining a range of techniques, including in vivo high-density electrophysiological recording, calcium imaging, optogenetics, behavioural analysis and computational approaches. In this project, we will investigate how functional interactions between neurons and astrocytes regulate the architecture of the sleep-wake cycle in mice by utilising state-of-the-art molecular and neurophotonic technologies. This project will also work closely with the recently established international consortium, DEEPER, funded from the EU’s Horizon 2020 (https://www.deeperproject.eu/). In the first instance, candidates may send their application to Dr Shuzo Sakata (shuzo.sakata@strath.ac.uk), including a CV and a cover letter, detailing their motivation for this project and their career goal.
Astrocytes: From Metabolism to Cognition
Different brain cell types exhibit distinct metabolic signatures that link energy economy to cellular function. Astrocytes and neurons, for instance, diverge dramatically in their reliance on glycolysis versus oxidative phosphorylation, underscoring that metabolic fuel efficiency is not uniform across cell types. A key factor shaping this divergence is the structural organization of the mitochondrial respiratory chain into supercomplexes. Specifically, complexes I (CI) and III (CIII) form a CI–CIII supercomplex, but the degree of this assembly varies by cell type. In neurons, CI is predominantly integrated into supercomplexes, resulting in highly efficient mitochondrial respiration and minimal reactive oxygen species (ROS) generation. Conversely, in astrocytes, a larger fraction of CI remains unassembled, freely existing apart from CIII, leading to reduced respiratory efficiency and elevated mitochondrial ROS production. Despite this apparent inefficiency, astrocytes boast a highly adaptable metabolism capable of responding to diverse stressors. Their looser CI–CIII organization allows for flexible ROS signaling, which activates antioxidant programs via transcription factors like Nrf2. This modular architecture enables astrocytes not only to balance energy production but also to support neuronal health and influence complex organismal behaviors.
Astrocytes release glutamate by regulated exocytosis in health and disease
Astrocytes release glutamate by regulated exocytosis in health and disease Vladimir Parpura, International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, P.R. China Parpura will present you with the evidence that astrocytes, a subtype of glial cells in the brain, can exocytotically release the neurotransmitter glutamate and how this release is regulated. Spatiotemporal characteristic of vesicular fusion that underlie glutamate release in astrocytes will be discussed. He will also present data on a translational project in which this release pathway can be targeted for the treatment of glioblastoma, the deadliest brain cancer.
Combined electrophysiological and optical recording of multi-scale neural circuit dynamics
This webinar will showcase new approaches for electrophysiological recordings using our silicon neural probes and surface arrays combined with diverse optical methods such as wide-field or 2-photon imaging, fiber photometry, and optogenetic perturbations in awake, behaving mice. Multi-modal recording of single units and local field potentials across cortex, hippocampus and thalamus alongside calcium activity via GCaMP6F in cortical neurons in triple-transgenic animals or in hippocampal astrocytes via viral transduction are brought to bear to reveal hitherto inaccessible and under-appreciated aspects of coordinated dynamics in the brain.
Blood-brain barrier dysfunction in epilepsy: Time for translation
The neurovascular unit (NVU) consists of cerebral blood vessels, neurons, astrocytes, microglia, and pericytes. It plays a vital role in regulating blood flow and ensuring the proper functioning of neural circuits. Among other, this is made possible by the blood-brain barrier (BBB), which acts as both a physical and functional barrier. Previous studies have shown that dysfunction of the BBB is common in most neurological disorders and is associated with neural dysfunction. Our studies have demonstrated that BBB dysfunction results in the transformation of astrocytes through transforming growth factor beta (TGFβ) signaling. This leads to activation of the innate neuroinflammatory system, changes in the extracellular matrix, and pathological plasticity. These changes ultimately result in dysfunction of the cortical circuit, lower seizure threshold, and spontaneous seizures. Blocking TGFβ signaling and its associated pro-inflammatory pathway can prevent this cascade of events, reduces neuroinflammation, repairs BBB dysfunction, and prevents post-injury epilepsy, as shown in experimental rodents. To further understand and assess BBB integrity in human epilepsy, we developed a novel imaging technique that quantitatively measures BBB permeability. Our findings have confirmed that BBB dysfunction is common in patients with drug-resistant epilepsy and can assist in identifying the ictal-onset zone prior to surgery. Current clinical studies are ongoing to explore the potential of targeting BBB dysfunction as a novel treatment approach and investigate its role in drug resistance, the spread of seizures, and comorbidities associated with epilepsy.
Astrocyte reprogramming / activation and brain homeostasis
Astrocytes are multifunctional glial cells, implicated in neurogenesis and synaptogenesis, supporting and fine-tuning neuronal activity and maintaining brain homeostasis by controlling blood-brain barrier permeability. During the last years a number of studies have shown that astrocytes can also be converted into neurons if they force-express neurogenic transcription factors or miRNAs. Direct astrocytic reprogramming to induced-neurons (iNs) is a powerful approach for manipulating cell fate, as it takes advantage of the intrinsic neural stem cell (NSC) potential of brain resident reactive astrocytes. To this end, astrocytic cell fate conversion to iNs has been well-established in vitro and in vivo using combinations of transcription factors (TFs) or chemical cocktails. Challenging the expression of lineage-specific TFs is accompanied by changes in the expression of miRNAs, that post-transcriptionally modulate high numbers of neurogenesis-promoting factors and have therefore been introduced, supplementary or alternatively to TFs, to instruct direct neuronal reprogramming. The neurogenic miRNA miR-124 has been employed in direct reprogramming protocols supplementary to neurogenic TFs and other miRNAs to enhance direct neurogenic conversion by suppressing multiple non-neuronal targets. In our group we aimed to investigate whether miR-124 is sufficient to drive direct reprogramming of astrocytes to induced-neurons (iNs) on its own both in vitro and in vivo and elucidate its independent mechanism of reprogramming action. Our in vitro data indicate that miR-124 is a potent driver of the reprogramming switch of astrocytes towards an immature neuronal fate. Elucidation of the molecular pathways being triggered by miR-124 by RNA-seq analysis revealed that miR-124 is sufficient to instruct reprogramming of cortical astrocytes to immature induced-neurons (iNs) in vitro by down-regulating genes with important regulatory roles in astrocytic function. Among these, the RNA binding protein Zfp36l1, implicated in ARE-mediated mRNA decay, was found to be a direct target of miR-124, that be its turn targets neuronal-specific proteins participating in cortical development, which get de-repressed in miR-124-iNs. Furthermore, miR-124 is potent to guide direct neuronal reprogramming of reactive astrocytes to iNs of cortical identity following cortical trauma, a novel finding confirming its robust reprogramming action within the cortical microenvironment under neuroinflammatory conditions. In parallel to their reprogramming properties, astrocytes also participate in the maintenance of blood-brain barrier integrity, which ensures the physiological functioning of the central nervous system and gets affected contributing to the pathology of several neurodegenerative diseases. To study in real time the dynamic physical interactions of astrocytes with brain vasculature under homeostatic and pathological conditions, we performed 2-photon brain intravital imaging in a mouse model of systemic neuroinflammation, known to trigger astrogliosis and microgliosis and to evoke changes in astrocytic contact with brain vasculature. Our in vivo findings indicate that following neuroinflammation the endfeet of activated perivascular astrocytes lose their close proximity and physiological cross-talk with vasculature, however this event is at compensated by the cross-talk of astrocytes with activated microglia, safeguarding blood vessel coverage and maintenance of blood-brain integrity.
Irisin reduces amyloid-β by inducing the release of neprilysin from astrocytes following downregulation of ERK-STAT3 signaling
Neurobiological significance of alternative modes of mRNA translation in astrocytes
How do Astrocytes Sculpt Synaptic Circuits?
Cholesterol and matrisome pathways dysregulated in Alzheimer’s disease brain astrocytes and microglia
The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer’s disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk. Global transcriptomic analyses reveal human-specific, APOE4-driven lipid metabolic dysregulation in astrocytes and microglia. APOE4 enhances de novo cholesterol synthesis despite elevated intracellular cholesterol due to lysosomal cholesterol sequestration in astrocytes. Further, matrisome dysregulation is associated with upregulated chemotaxis, glial activation, and lipid biosynthesis in astrocytes co-cultured with neurons, which recapitulates altered astrocyte matrisome signaling in human brain. Thus, APOE4 initiates glia-specific cell and non-cell autonomous dysregulation that may contribute to increased AD risk." https://doi.org/10.1016/j.cell.2022.05.017
Imperial Neurotechnology 2022 - Annual Research Symposium
A diverse mix of neurotechnology talks and posters from researchers at Imperial and beyond. Visit our event page to find out more. The event is in-person but talk sessions will be broadcast via Teams.
Astroglial modulation of the antidepressant action of deep brain and bright light stimulation
Even if major depression is now the most common of psychiatric disorders, successful antidepressant treatments are still difficult to achieve. Therefore, a better understanding of the mechanisms of action of current antidepressant treatments is needed to ultimately identify new targets and enhance beneficial effects. Given the intimate relationships between astrocytes and neurons at synapses and the ability of astrocytes to "sense" neuronal communication and release gliotransmitters, an attractive hypothesis is emerging stating that the effects of antidepressants on brain function could be, at least in part, modulated by direct influences of astrocytes on neuronal networks. We will present two preclinical studies revealing a permissive role of glia in the antidepressant response: i) Control of the antidepressant-like effects of rat prefrontal cortex Deep Brain Stimulation (DBS) by astroglia, ii) Modulation of antidepressant efficacy of Bright Light Stimulation (BLS) by lateral habenula astroglia. Therefore, it is proposed that an unaltered neuronal-glial system constitutes a major prerequisite to optimize antidepressant efficacy of DBS or BLS. Collectively, these results pave also the way to the development of safer and more effective antidepressant strategies.
Why is the suprachiasmatic nucleus such a brilliant circadian time-keeper?
Circadian clocks dominate our lives. By creating and distributing an internal representation of 24-hour solar time, they prepare us, and thereby adapt us, to the daily and seasonal world. Jet-lag is an obvious indicator of what can go wrong when such adaptation is disrupted acutely. More seriously, the growing prevalence of rotational shift-work which runs counter to our circadian life, is a significant chronic challenge to health, presenting as increased incidence of systemic conditions such as metabolic and cardiovascular disease. Added to this, circadian and sleep disturbances are a recognised feature of various neurological and psychiatric conditions, and in some cases may contribute to disease progression. The “head ganglion” of the circadian system is the suprachiasmatic nucleus (SCN) of the hypothalamus. It synchronises the, literally, innumerable cellular clocks across the body, to each other and to solar time. Isolated in organotypic slice culture, it can maintain precise, high-amplitude circadian cycles of neural activity, effectively, indefinitely, just as it does in vivo. How is this achieved: how does this clock in a dish work? This presentation will consider SCN time-keeping at the level of molecular feedback loops, neuropeptidergic networks and neuron-astrocyte interactions.
Astrocytes encode complex behaviorally relevant information
While it is generally accepted that neurons control complex behavior and brain computation, the role of non-neuronal cells in this context remains unclear. Astrocytes, glial cells of the central nervous system, exhibit complex forms of chemical excitation, most prominently calcium transients, evoked by local and projection neuron activity. In this talk, I will provide mechanistic links between astrocytes’ spatiotemporally complex activity patterns, neuronal molecular signaling, and behavior. Using a visual detection task, in vivo calcium imaging, robust statistical analyses, and machine learning approaches, my work shows that cortical astrocytes encode the animal's decision, reward, performance level, and sensory properties. Behavioral context and motor activity-related parameters strongly impact astrocyte responses. Error analysis confirms that astrocytes carry behaviorally relevant information, supporting astrocytes' complementary role to neuronal coding beyond their established homeostatic and metabolic roles.
Norepinephrine links astrocytic activity to regulation of cortical state
Cortical state, defined by the synchrony of population-level neuronal activity, is a key determinant of sensory perception. While many arousal-associated neuromodulators—including norepinephrine (NE)—reduce cortical synchrony, how the cortex resynchronizes following NE signaling remains unknown. Using in vivo two-photon imaging and electrophysiology in mouse visual cortex, we describe a critical role for cortical astrocytes in circuit resynchronization. We characterize astrocytes’ sensitive calcium responses to changes in behavioral arousal and NE, identify that astrocyte signaling precedes increases in cortical synchrony, and demonstrate that astrocyte-specific deletion of Adra1A alters arousal-related cortical synchrony. Our findings demonstrate that astrocytic NE signaling acts as a distinct neuromodulatory pathway, regulating cortical state and linking arousal-associated desynchrony to cortical circuit resynchronization.
Astrocytes and oxytocin interaction regulates amygdala neuronal network activity and related behaviors”
Oxytocin orchestrates social and emotional behaviors through modulation of neural circuits in brain structures such as the central amygdala (CeA). In this structure, the release of oxytocin modulates inhibitory circuits and subsequently suppresses fear responses and decreases anxiety levels. Using astrocyte-specific gain and loss of function approaches and pharmacology, we demonstrate that oxytocin signaling in the central amygdala relies on a subpopulation of astrocytes that represent a prerequisite for proper function of CeA circuits and adequate behavioral responses, both in rats and mice. Our work identifies astrocytes as crucial cellular intermediaries of oxytocinergic modulation in emotional behaviors related to anxiety or positive reinforcement. To our knowledge, this is the first demonstration of a direct role of astrocytes in oxytocin signaling and challenges the long-held dogma that oxytocin signaling occurs exclusively via direct action on neurons in the central nervous system.
Mechanisms to medicines in neurodegeneration
Dysregulation of protein synthesis both globally and locally in neurons and astrocytes is a key feature of neurodegenerative diseases. Aberrant signalling through the Unfolded Protein Response (UPR) and related Integrated Stress Response (ISR) have become major targets for neuroprotection in these disorders. In addition, other homeostatic mechanisms and stress responses, including the cold shock response, appear to regulate local translation and RNA splicing to control synapse maintenance and regeneration and can also be targeted therapeutically for neuroprotection. We have defined the role of UPR/ISR and the cold-shock response in neurodegenerative disorders and have developed translational strategies targeting them for new treatments for dementia.
Astrocytes, guardians of critical period plasticity in the visual cortex
The suprachiasmatic nucleus: the brain's circadian clock
Sleep and all of the other circadian rhythms that adapt us to the 24 hour world are controlled by the suprachiasmatic nucleus (SCN), the brain's central circadian clock. And yet, the SCN consists of only 20,000 neurons and astrocytes, so what makes it such a powerful clock, able to set the tempo to our lives? Professor Hastings will consider the cell-autonomus and neural circuit-level mechanisms that sustain the SCN clock and how it regulates rest, activity and sleep.
Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning
How is it that some memories fade in a day while others last forever? The formation of long-lasting (remote) memories depends on the coordinated activity between the hippocampus and frontal cortices, but the timeline of these interactions is debated. Astrocytes, star-shaped glial cells, sense and modify neuronal activity, but their role in remote memory is scarcely explored. We manipulated the activity of hippocampal astrocytes during memory acquisition and discovered it impaired remote, but not recent, memory retrieval. We also revealed a massive recruitment of cortical-projecting hippocampal neurons during memory acquisition, a process that is specifically inhibited by astrocytic manipulation. Finally, we directly inhibited this projection during memory acquisition to prove its necessity for the formation of remote memory. Our findings reveal that the foundation of remote memory can be established during acquisition with projection-specific effect of astrocytes.
Magnetic Resonance Measures of Brain Blood Vessels, Metabolic Activity, and Pathology in Multiple Sclerosis
The normally functioning blood-brain barrier (BBB) regulates the transfer of material between blood and brain. BBB dysfunction has long been recognized in multiple sclerosis (MS), and there is considerable interest in quantifying functional aspects of brain blood vessels and their role in disease progression. Parenchymal water content and its association with volume regulation is important for proper brain function, and is one of the key roles of the BBB. There is convincing evidence that the astrocyte is critical in establishing and maintaining a functional BBB and providing metabolic support to neurons. Increasing evidence suggests that functional interactions between endothelia, pericytes, astrocytes, and neurons, collectively known as the neurovascular unit, contribute to brain water regulation, capillary blood volume and flow, BBB permeability, and are responsive to metabolic demands. Increasing evidence suggests altered metabolism in MS brain which may contribute to reduced neuro-repair and increased neurodegeneration. Metabolically relevant biomarkers may provide sensitive readouts of brain tissue at risk of degeneration, and magnetic resonance offers substantial promise in this regard. Dynamic contrast enhanced MRI combined with appropriate pharmacokinetic modeling allows quantification of distinct features of BBB including permeabilities to contrast agent and water, with rate constants that differ by six orders of magnitude. Mapping of these rate constants provides unique biological aspects of brain vasculature relevant to MS.
Sonic hedgehog signaling: from neurons to astrocytes during cortical circuit assembly
Playing fast and loose with glutamate builds healthy circuits in the developing cortex
The construction of cortical circuits requires the precise formation of connections between excitatory and inhibitory neurons during early development. Multiple factors, including neurotransmitters, neuronal activity, and neuronal-glial interactions, shape how these critical circuits form. Disruptions of these early processes can disrupt circuit formation, leading to epilepsy and other neurodevelopmental disorders. Here, I will describe our work into understanding how prolonged post-natal astrocyte development in the cortex creates a permissive window for glutamate signaling that provides tonic activation of developing interneurons through Grin2D NMDA receptors. Experimental disruption of this pathway results in hyperexcitable cortical circuits and human mutations in the Grin2D gene, as well as other related molecules that regulate early life glutamate signaling, are associated with devastating epileptic encephalopathies. We will explore fundamental mechanisms linking early life glutamate signaling and later circuit hyperexcitability, with an emphasis on potential therapeutic interventions aimed at reducing epilepsy and other neurological dysfunction.
Novel mechanisms of neurogenesis and neural repair
In order to re-install neurogenesis after loss of neurons upon injury or neurodegeneration, we need to understand the basic principles of neurogenesis. I will first discuss about our discovery of a novel centrosome protein (Camargo et al., 2019) and discuss unpublished work about the great diversity of interphase centrosome proteomes and their relevance for neurodevelopmental disorders. I would then present work on a master regulator of neural stem cell amplification and brain folding (Stahl et al., 2013; Esgleas et al., 2020) to proceed presenting data on utilizing some of these factors for turning astrocytes into neurons. I will present data on the critical role of mitochondria in this conversion process (Gascon et al., 2016, Russo et al., 2020) and how it regulates the speed of conversion also showing unpublished data. If time permits I may touch on recent progress in in vivo reprogramming (Mattugini et al., 2019). Taken together, these data highlight the surprising specificity and importance of organelle diversity from centrosome, nucleolus and mitochondria as key regulators in development and reprogramming.
How do Astrocytes Sculpt Synaptic Circuits?
What about antibiotics for the treatment of the dyskinesia induced by L-DOPA?
L-DOPA-induced dyskinesia is a debilitating adverse effect of treating Parkinson’s disease with this drug. New therapeutic approaches that prevent or attenuate this side effect is clearly needed. Wistar adult male rats submitted to 6-hydroxydopamine-induced unilateral medial forebrain bundle lesions were treated with L-DOPA (oral or subcutaneous, 20 mg kg-1) once a day for 14 days. After this period, we tested if doxycycline (40 mg kg-1, intraperitoneal, a subantimicrobial dose) and COL-3 (50 and 100 nmol, intracerebroventricular) could reverse LID. In an additional experiment, doxycycline was also administered repeatedly with L-DOPA to verify if it would prevent LID development. A single injection of doxycycline or COL-3 together with L-DOPA attenuated the dyskinesia. Co-treatment with doxycycline from the first day of L-DOPA suppressed the onset of dyskinesia. The improved motor responses to L-DOPA remained intact in the presence of doxycycline or COL-3, indicating the preservation of L-DOPA-produced benefits. Doxycycline treatment was associated with decreased immunoreactivity of FosB, cyclooxygenase-2, the astroglial protein GFAP and the microglial protein OX-42 which are elevated in the basal ganglia of rats exhibiting dyskinesia. Doxycycline also decreased metalloproteinase-2/-9 activity, metalloproteinase-3 expression and reactive oxygen species production. Metalloproteinase-2/-9 activity and production of reactive oxygen species in the basal ganglia of dyskinetic rats showed a significant correlation with the intensity of dyskinesia. The present study demonstrates the anti-dyskinetic potential of doxycycline and its analog compound COL-3 in hemiparkinsonian rats. Given the long-established and safe clinical use of doxycycline, this study suggests that these drugs might be tested to reduce or to prevent L-DOPA-induced dyskinesia in Parkinson’s patients.
Microenvironment role in axonal regeneration- looking beyond the neurons
After an injury in the adult mammalian central nervous system, lesioned axons fail to regenerate. This failure to regenerate contrasts with the remarkable potential of axons to grow during embryonic development and after an injury in the peripheral nervous system. Peripheral sensory neurons with cell soma in dorsal root ganglia (DRG) switch to a regenerative state after nerve injury to enable axon regeneration and functional recovery. Decades of research have focused on the signaling pathways elicited by injury in sensory neurons and in Schwann cells that insulate axons as central mechanisms regulating nerve repair. However, neuronal microenvironment is far more complex and is composed of multiple cell types including endothelial, immune and glial cells. Whether the microenvironment surrounding neuronal soma contribute to the poor regenerative outcomes following central injuries remains largely unexplored. To answer this question, we performed a single cell transcriptional profiling of the DRG neuronal microenvironment response to peripheral and central injuries. In dissecting the roles of the microenvironment contribution, we have focused on a poorly studied population of Satellite Glial Cells (SGC) surrounding the neuronal cell soma. This study has uncovered a previously unknown role for SGC in nerve regeneration and defined SGC as transcriptionally distinct from Schwann cells while sharing similarities with astrocytes. Upon a peripheral injury, SGC contribute to axon regeneration via Fatty acid synthase (Fasn)-PPARα signaling pathway. Through repurposing fenofibrate, an FDA- approved PPARα agonist used for dyslipidemia treatment, we were able to rescue the impaired regeneration in mice lacking Fasn in SGC. Our analysis reveals that in response to central injuries, SGC do not activate the PPAR signaling pathway. However, induction of this pathway with fenofibrate treatment, rescued axon regeneration following an injury to the central nerves. Collectively, our results uncovered a previously unappreciated role of the neuronal microenvironment differential response in central and peripheral injuries.
Sparks, flames, and inferno: epileptogenesis in the glioblastoma microenvironment
Glioblastoma cells trigger pharmacoresistant seizures that may promote tumor growth and diminish the quality of remaining life. To define the relationship between growth of glial tumors and their neuronal microenvironment, and to identify genomic biomarkers and mechanisms that may point to better prognosis and treatment of drug resistant epilepsy in brain cancer, we are analyzing a new generation of genetically defined CRISPR/in utero electroporation inborn glioblastoma (GBM) tumor models engineered in mice. The molecular pathophysiology of glioblastoma cells and surrounding neurons and untransformed astrocytes are compared at serial stages of tumor development. Initial studies reveal that epileptiform EEG spiking is a very early and reliable preclinical signature of GBM expansion in these mice, followed by rapidly progressive seizures and death within weeks. FACS-sorted transcriptomic analysis of cortical astrocytes reveals the expansion of a subgroup enriched in pro-synaptogenic genes that may drive hyperexcitability, a novel mechanism of epileptogenesis. Using a prototypical GBM IUE model, we systematically define and correlate the earliest appearance of cortical hyperexcitability with progressive cortical tumor cell invasion, including spontaneous episodes of spreading cortical depolarization, innate inflammation, and xCT upregulation in the peritumoral microenvironment. Blocking this glutamate exporter reduces seizure load. We show that the host genome contributes to seizure risk by generating tumors in a monogenic deletion strain (MapT/tau -/-) that raises cortical seizure threshold. We also show that the tumor variant profile determines epilepsy risk. Our genetic dissection approach sets the stage to broadly explore the developmental biology of personalized tumor/host interactions in mice engineered with novel human tumor mutations in specified glial cell lineages.
CRISPR-based functional genomics in iPSC-based models of brain disease
Human genes associated with brain-related diseases are being discovered at an accelerating pace. A major challenge is an identification of the mechanisms through which these genes act, and of potential therapeutic strategies. To elucidate such mechanisms in human cells, we established a CRISPR-based platform for genetic screening in human iPSC-derived neurons, astrocytes and microglia. Our approach relies on CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa), in which a catalytically dead version of the bacterial Cas9 protein recruits transcriptional repressors or activators, respectively, to endogenous genes to control their expression, as directed by a small guide RNA (sgRNA). Complex libraries of sgRNAs enable us to conduct genome-wide or focused loss-of-function and gain-of-function screens. Such screens uncover molecular players for phenotypes based on survival, stress resistance, fluorescent phenotypes, high-content imaging and single-cell RNA-Seq. To uncover disease mechanisms and therapeutic targets, we are conducting genetic modifier screens for disease-relevant cellular phenotypes in patient-derived neurons and glia with familial mutations and isogenic controls. In a genome-wide screen, we have uncovered genes that modulate the formation of disease-associated aggregates of tau in neurons with a tauopathy-linked mutation (MAPT V337M). CRISPRi/a can also be used to model and functionally evaluate disease-associated changes in gene expression, such as those caused by eQTLs, haploinsufficiency, or disease states of brain cells. We will discuss an application to Alzheimer’s Disease-associated genes in microglia.
Neural-astrocyte interaction enables contextually guided circuit dynamics
COSYNE 2023
Adenosine and astrocytes determine the developmental dynamics of spike timing-dependent plasticity in the somatosensory cortex
FENS Forum 2024
α1-noradrenergic cAMP signaling in astrocytes of the murine olfactory bulb
FENS Forum 2024
Adenosine triggers astrocyte reactivity to drive the pathogenesis of sepsis-associated encephalopathy
FENS Forum 2024
Aging impairs mitochondrial metabolism and causes atrophy of human cortical astrocytes
FENS Forum 2024
Alteration of neuron-astrocyte interplay in the early phase of Alzheimer’s disease
FENS Forum 2024
Altered autophagy in KANSL1 haploinsufficient iPSC-derived astrocytes
FENS Forum 2024
Assessing histological processing of mouse brain tissue for the reconstruction of tridimensional astrocyte structure
FENS Forum 2024
Astrocyte activity triggers adaptive myelin plasticity and increased neuronal excitability in the somatosensory cortex following sensory deprivation
FENS Forum 2024
Astrocyte-based interleukin-2 gene therapy in temporal lobe epilepsy
FENS Forum 2024
Astrocyte calcium signaling involvement in hippocampus-prefrontal cortex
FENS Forum 2024
Astrocyte-generated neurons functionally integrate into the lesioned striatum
FENS Forum 2024
Astrocyte diversity across mammals: A comparative analysis on distribution and single-cell morphology
FENS Forum 2024
Astrocyte-neuron lactate shuttle in depression: Insights from stress and corticosterone models
FENS Forum 2024
Astrocyte noradrenaline α-1A receptor activation induces changes to inhibitory synaptic transmission in the hippocampus and reduces the frequency of pharmacoresistant spontaneous seizures
FENS Forum 2024
Astrocyte-originated connection mapping of presynaptic neurons using the rabies virus tracer
FENS Forum 2024
Astrocytes act as detectors of sensory input and calcium-dependent regulators of experience-dependent plasticity in cortical networks
FENS Forum 2024
Astrocytes in globus pallidus externa integrate sensory information through dopamine D2 receptors
FENS Forum 2024
Astrocytes' grasp on the brain
FENS Forum 2024
Astrocytes in the human principal olivary nucleus: Morphological changes during aging
FENS Forum 2024
Astrocytes phagocytic sexual dimorphism fosters major depressive disorder through MEGF10 dysfunction
FENS Forum 2024
Astrocytes provide the temporal dynamic required for theta-driven memory formation in the hippocampus
FENS Forum 2024
Atypical astrocytes in the aging brain: An underreported phenotype where downregulated membrane proteins disrupt glial regulated homeostatic capacities
FENS Forum 2024
Automated detection and analysis of spontaneous neurotransmitter releases from neurons and astrocytes
FENS Forum 2024
Catching astrocyte ensembles: Astrocytic ensembles control cue-motivated behavior
FENS Forum 2024
Characterization of CNS-LNC in primary mouse astrocytes
FENS Forum 2024
Computer vision and image processing applications on astrocyte-glioma interactions in 3D cell culture
FENS Forum 2024
Dissecting the impact of prenatal inflammation on astrocytes and Pentraxin 3
FENS Forum 2024
Dissecting the role of autophagy to elucidate the differential response of oligodendrocytes and astrocytes to hypoxic injury in vitro
FENS Forum 2024
DREADD-based manipulation of hippocampal astrocyte Gq signalling in a chronic mouse model of medial temporal lobe epilepsy
FENS Forum 2024
Dual inhibition of ecto-5'-nucleotidase (CD73) and adenosine A2A receptor reduces neuroinflammation and oxidative stress in TNF, IL-1α, C1q-induced neurotoxic astrocytes
FENS Forum 2024
Effect of glyphosate at acceptable daily intake dose on astrocytes-neurons communication
FENS Forum 2024
Epigenetic modulation of astrocyte reactivity to prevent neurodegeneration
FENS Forum 2024
Epileptic activity induces rapid ROCK1-dependent astrocyte morphology changes
FENS Forum 2024
Evaluating the effect of astrocyte-derived cholesterol on oligodendroglial maturation in an in vitro model of hypoxic brain injury
FENS Forum 2024
Exploring biophysical and biochemical mechanisms of neuron-astrocyte network models
FENS Forum 2024
Exploring the impact of partial reprogramming on astrocyte biology and its implications for brain homeostasis and aging
FENS Forum 2024
Exploring the potential role of atypical astrocytes in the early stages of Alzheimer’s disease in the APP<sub>NL-G-F</sub> mouse model
FENS Forum 2024
Extracellular vesicles: An exploration into the bi-directional crosstalk of endothelial cells and astrocytes at the blood-brain barrier
FENS Forum 2024
Modulation of Spike-timing-dependent Plasticity via the Interaction of Astrocyte-regulated D-serine with NMDA Receptors
Bernstein Conference 2024