Asynchrony
asynchrony
NMC4 Short Talk: An optogenetic theory of stimulation near criticality
Recent advances in optogenetics allow for stimulation of neurons with sub-millisecond spike jitter and single neuron selectivity. Already this precision has revealed new levels of cortical sensitivity: stimulating tens of neurons can yield changes in the mean firing rate of thousands of similarly tuned neurons. This extreme sensitivity suggests that cortical dynamics are near criticality. Criticality is often studied in neural systems as a non-equilibrium thermodynamic process in which scale-free patterns of activity, called avalanches, emerge between distinct states of spontaneous activity. While criticality is well studied, it is still unclear what these distinct states of spontaneous activity are and what responses we expect from stimulation of this activity. By answering these questions, optogenetic stimulation will become a new avenue for approaching criticality and understanding cortical dynamics. Here, for the first time, we study the effects of optogenetic-like stimulation on a model near criticality. We study a model of Inhibitory/Excitatory (I/E) Leaky Integrate and Fire (LIF) spiking neurons which display a region of high sensitivity as seen in experiments. We find that this region of sensitivity is, indeed, near criticality. We derive the Dynamic Mean Field Theory of this model and find that the distinct states of activity are asynchrony and synchrony. We use our theory to characterize response to various types and strengths of optogenetic stimulation. Our model and theory predict that asynchronous, near-critical dynamics can have two qualitatively different responses to stimulation: one characterized by high sensitivity, discrete event responses, and high trial-to-trial variability, and another characterized by low sensitivity, continuous responses with characteristic frequencies, and low trial-to-trial variability. While both response types may be considered near-critical in model space, networks which are closest to criticality show a hybrid of these response effects.
An in-silico framework to study the cholinergic modulation of the neocortex
Neuromodulators control information processing in cortical microcircuits by regulating the cellular and synaptic physiology of neurons. Computational models and detailed simulations of neocortical microcircuitry offer a unifying framework to analyze the role of neuromodulators on network activity. In the present study, to get a deeper insight in the organization of the cortical neuropil for modeling purposes, we quantify the fiber length per cortical volume and the density of varicosities for catecholaminergic, serotonergic and cholinergic systems using immunocytochemical staining and stereological techniques. The data obtained are integrated into a biologically detailed digital reconstruction of the rodent neocortex (Markram et al, 2015) in order to model the influence of modulatory systems on the activity of the somatosensory cortex neocortical column. Simulations of ascending modulation of network activity in our model predict the effects of increasing levels of neuromodulators on diverse neuron types and synapses and reveal a spectrum of activity states. Low levels of neuromodulation drive microcircuit activity into slow oscillations and network synchrony, whereas high neuromodulator concentrations govern fast oscillations and network asynchrony. The models and simulations thus provide a unifying in silico framework to study the role of neuromodulators in reconfiguring network activity.