Topic spotlight
TopicWorld Wide

audio

Discover seminars, jobs, and research tagged with audio across World Wide.
30 curated items18 Seminars10 ePosters2 Positions
Updated 2 days ago
30 items · audio
30 results
Position

Dorien Herremans

Singapore University of Technology and Design (SUTD), AMAAI (Audio, Music and AI Lab)
Singapore University of Technology and Design (SUTD)
Dec 5, 2025

The AMAAI lab is engaged in cutting-edge research at the intersection of music, audio, and artificial intelligence. Our PhD students contribute to groundbreaking projects that explore areas such as Generative Music AI, Music Information Retrieval, AI Music Production, and Affective Computing for Music. A PhD in the AMAAI lab offers the opportunity to conduct research at the forefront of a rapidly developing field, gain experience in presenting research at top academic conferences, publishing papers in prestigious journals, and potentially forge collaborations with leading figures in the music industry.

Position

Dorien Herremans

Singapore University of Technology and Design
Singapore University of Technology and Design
Dec 5, 2025

AI.SG will be releasing the PhD fellowship call very soon. This competitive fellowship is for top AI students interested in doing a PhD at Singapore University of Technology and Design with excellent compensation. There will be a tight application window hence the advance notice. Postdoc fellowships are available for ASEAN nationals through the SASEAF fellowship, deadline 31 Jan.

SeminarPsychology

Short and Synthetically Distort: Investor Reactions to Deepfake Financial News

Marc Eulerich
Universität Duisburg-Essen
May 27, 2025

Recent advances in artificial intelligence have led to new forms of misinformation, including highly realistic “deepfake” synthetic media. We conduct three experiments to investigate how and why retail investors react to deepfake financial news. Results from the first two experiments provide evidence that investors use a “realism heuristic,” responding more intensely to audio and video deepfakes as their perceptual realism increases. In the third experiment, we introduce an intervention to prompt analytical thinking, varying whether participants make analytical judgments about credibility or intuitive investment judgments. When making intuitive investment judgments, investors are strongly influenced by both more and less realistic deepfakes. When making analytical credibility judgments, investors are able to discern the non-credibility of less realistic deepfakes but struggle with more realistic deepfakes. Thus, while analytical thinking can reduce the impact of less realistic deepfakes, highly realistic deepfakes are able to overcome this analytical scrutiny. Our results suggest that deepfake financial news poses novel threats to investors.

SeminarNeuroscienceRecording

Neural Mechanisms of Subsecond Temporal Encoding in Primary Visual Cortex

Samuel Post
University of California, Riverside
Nov 28, 2023

Subsecond timing underlies nearly all sensory and motor activities across species and is critical to survival. While subsecond temporal information has been found across cortical and subcortical regions, it is unclear if it is generated locally and intrinsically or if it is a read out of a centralized clock-like mechanism. Indeed, mechanisms of subsecond timing at the circuit level are largely obscure. Primary sensory areas are well-suited to address these question as they have early access to sensory information and provide minimal processing to it: if temporal information is found in these regions, it is likely to be generated intrinsically and locally. We test this hypothesis by training mice to perform an audio-visual temporal pattern sensory discrimination task as we use 2-photon calcium imaging, a technique capable of recording population level activity at single cell resolution, to record activity in primary visual cortex (V1). We have found significant changes in network dynamics through mice’s learning of the task from naive to middle to expert levels. Changes in network dynamics and behavioral performance are well accounted for by an intrinsic model of timing in which the trajectory of q network through high dimensional state space represents temporal sensory information. Conversely, while we found evidence of other temporal encoding models, such as oscillatory activity, we did not find that they accounted for increased performance but were in fact correlated with the intrinsic model itself. These results provide insight into how subsecond temporal information is encoded mechanistically at the circuit level.

SeminarNeuroscienceRecording

Rodents to Investigate the Neural Basis of Audiovisual Temporal Processing and Perception

Ashley Schormans
BrainsCAN, Western University, Canada.
Sep 26, 2023

To form a coherent perception of the world around us, we are constantly processing and integrating sensory information from multiple modalities. In fact, when auditory and visual stimuli occur within ~100 ms of each other, individuals tend to perceive the stimuli as a single event, even though they occurred separately. In recent years, our lab, and others, have developed rat models of audiovisual temporal perception using behavioural tasks such as temporal order judgments (TOJs) and synchrony judgments (SJs). While these rodent models demonstrate metrics that are consistent with humans (e.g., perceived simultaneity, temporal acuity), we have sought to confirm whether rodents demonstrate the hallmarks of audiovisual temporal perception, such as predictable shifts in their perception based on experience and sensitivity to alterations in neurochemistry. Ultimately, our findings indicate that rats serve as an excellent model to study the neural mechanisms underlying audiovisual temporal perception, which to date remains relativity unknown. Using our validated translational audiovisual behavioural tasks, in combination with optogenetics, neuropharmacology and in vivo electrophysiology, we aim to uncover the mechanisms by which inhibitory neurotransmission and top-down circuits finely control ones’ perception. This research will significantly advance our understanding of the neuronal circuitry underlying audiovisual temporal perception, and will be the first to establish the role of interneurons in regulating the synchronized neural activity that is thought to contribute to the precise binding of audiovisual stimuli.

SeminarNeuroscience

Learning through the eyes and ears of a child

Brenden Lake
NYU
Apr 20, 2023

Young children have sophisticated representations of their visual and linguistic environment. Where do these representations come from? How much knowledge arises through generic learning mechanisms applied to sensory data, and how much requires more substantive (possibly innate) inductive biases? We examine these questions by training neural networks solely on longitudinal data collected from a single child (Sullivan et al., 2020), consisting of egocentric video and audio streams. Our principal findings are as follows: 1) Based on visual only training, neural networks can acquire high-level visual features that are broadly useful across categorization and segmentation tasks. 2) Based on language only training, networks can acquire meaningful clusters of words and sentence-level syntactic sensitivity. 3) Based on paired visual and language training, networks can acquire word-referent mappings from tens of noisy examples and align their multi-modal conceptual systems. Taken together, our results show how sophisticated visual and linguistic representations can arise through data-driven learning applied to one child’s first-person experience.

SeminarNeuroscienceRecording

Motor contribution to auditory temporal predictions

Benjamin Morillon
Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes
Dec 13, 2022

Temporal predictions are fundamental instruments for facilitating sensory selection, allowing humans to exploit regularities in the world. Recent evidence indicates that the motor system instantiates predictive timing mechanisms, helping to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Accordingly, in the auditory domain auditory-motor interactions are observed during perception of speech and music, two temporally structured sensory streams. I will present a behavioral and neurophysiological account for this theory and will detail the parameters governing the emergence of this auditory-motor coupling, through a set of behavioral and magnetoencephalography (MEG) experiments.

SeminarNeuroscienceRecording

Multisensory influences on vision: Sounds enhance and alter visual-perceptual processing

Viola Störmer
Dartmouth College
Nov 30, 2022

Visual perception is traditionally studied in isolation from other sensory systems, and while this approach has been exceptionally successful, in the real world, visual objects are often accompanied by sounds, smells, tactile information, or taste. How is visual processing influenced by these other sensory inputs? In this talk, I will review studies from our lab showing that a sound can influence the perception of a visual object in multiple ways. In the first part, I will focus on spatial interactions between sound and sight, demonstrating that co-localized sounds enhance visual perception. Then, I will show that these cross-modal interactions also occur at a higher contextual and semantic level, where naturalistic sounds facilitate the processing of real-world objects that match these sounds. Throughout my talk I will explore to what extent sounds not only improve visual processing but also alter perceptual representations of the objects we see. Most broadly, I will argue for the importance of considering multisensory influences on visual perception for a more complete understanding of our visual experience.

SeminarNeuroscienceRecording

Memory-enriched computation and learning in spiking neural networks through Hebbian plasticity

Thomas Limbacher
TU Graz
Nov 8, 2022

Memory is a key component of biological neural systems that enables the retention of information over a huge range of temporal scales, ranging from hundreds of milliseconds up to years. While Hebbian plasticity is believed to play a pivotal role in biological memory, it has so far been analyzed mostly in the context of pattern completion and unsupervised learning. Here, we propose that Hebbian plasticity is fundamental for computations in biological neural systems. We introduce a novel spiking neural network (SNN) architecture that is enriched by Hebbian synaptic plasticity. We experimentally show that our memory-equipped SNN model outperforms state-of-the-art deep learning mechanisms in a sequential pattern-memorization task, as well as demonstrate superior out-of-distribution generalization capabilities compared to these models. We further show that our model can be successfully applied to one-shot learning and classification of handwritten characters, improving over the state-of-the-art SNN model. We also demonstrate the capability of our model to learn associations for audio to image synthesis from spoken and handwritten digits. Our SNN model further presents a novel solution to a variety of cognitive question answering tasks from a standard benchmark, achieving comparable performance to both memory-augmented ANN and SNN-based state-of-the-art solutions to this problem. Finally we demonstrate that our model is able to learn from rewards on an episodic reinforcement learning task and attain near-optimal strategy on a memory-based card game. Hence, our results show that Hebbian enrichment renders spiking neural networks surprisingly versatile in terms of their computational as well as learning capabilities. Since local Hebbian plasticity can easily be implemented in neuromorphic hardware, this also suggests that powerful cognitive neuromorphic systems can be build based on this principle.

SeminarNeuroscienceRecording

What happens to our ability to perceive multisensory information as we age?

Fiona Newell
Trinity Collge Dublin
Jan 12, 2022

Our ability to perceive the world around us can be affected by a number of factors including the nature of the external information, prior experience of the environment, and the integrity of the underlying perceptual system. A particular challenge for the brain is to maintain a coherent perception from information encoded by the peripheral sensory organs whose function is affected by typical, developmental changes across the lifespan. Yet, how the brain adapts to the maturation of the senses, as well as experiential changes in the multisensory environment, is poorly understood. Over the past few years, we have used a range of multisensory tasks to investigate the role of ageing on the brain’s ability to merge sensory inputs. In particular, we have embedded an audio-visual task based on the sound-induced flash illusion (SIFI) into a large-scale, longitudinal study of ageing. Our findings support the idea that the temporal binding window (TBW) is modulated by age and reveal important individual differences in this TBW that may have clinical implications. However, our investigations also suggest the TWB is experience-dependent with evidence for both long and short term behavioural plasticity. An overview of these findings, including recent evidence on how multisensory integration may be associated with higher order functions, will be discussed.

SeminarNeuroscienceRecording

How does seeing help listening? Audiovisual integration in Auditory Cortex

Jennifer Bizley
University College London
Dec 1, 2021

Multisensory responses are ubiquitous in so-called unisensory cortex. However, despite their prevalence, we have very little understanding of what – if anything - they contribute to perception. In this talk I will focus on audio-visual integration in auditory cortex. Anatomical tracing studies highlight visual cortex as one source of visual input to auditory cortex. Using cortical cooling we test the hypothesis that these inputs support audiovisual integration in ferret auditory cortex. Behavioural studies in humans support the idea that visual stimuli can help listeners to parse an auditory scene. This effect is paralleled in single units in auditory cortex, where responses to a sound mixture can be determined by the timing of a visual stimulus such that sounds that are temporally coherent with a visual stimulus are preferentially represented. Our recent data therefore support the idea that one role for the early integration of auditory and visual signals in auditory cortex is to support auditory scene analysis, and that visual cortex plays a key role in this process.

SeminarNeuroscience

Looking and listening while moving

Tom Freeman
Cardiff University
Nov 16, 2021

In this talk I’ll discuss our recent work on how visual and auditory cues to space are integrated as we move. There are at least 3 reasons why this turns out to be a difficult problem for the brain to solve (and us to understand!). First, vision and hearing start off in different coordinates (eye-centred vs head-centred), so they need a common reference frame in which to communicate. By preventing eye and head movements, this problem has been neatly sidestepped in the literature, yet self-movement is the norm. Second, self-movement creates visual and auditory image motion. Correct interpretation therefore requires some form of compensation. Third, vision and hearing encode motion in very different ways: vision contains dedicated motion detectors sensitive to speed, whereas hearing does not. We propose that some (all?) of these problems could be solved by considering the perception of audiovisual space as the integration of separate body-centred visual and auditory cues, the latter formed by integrating image motion with motor system signals and vestibular information. To test this claim, we use a classic cue integration framework, modified to account for cues that are biased and partially correlated. We find good evidence for the model based on simple judgements of audiovisual motion within a circular array of speakers and LEDs that surround the participant while they execute self-controlled head movement.

SeminarNeuroscienceRecording

Perceptual and neural basis of sound-symbolic crossmodal correspondences

Krish Sathian
Penn State Health Milton S. Hershey Medical Center, Pennsylvania State University
Oct 27, 2021
SeminarNeuroscienceRecording

Development of multisensory perception and attention and their role in audiovisual speech processing

David Lewkowicz
Haskins Labs & Yale Child Study Ctr.
Oct 20, 2021
SeminarNeuroscienceRecording

Music training effects on multisensory and cross-sensory transfer processing: from cross-sectional to RCT studies

Karin Petrini
University of Bath
Sep 8, 2021
SeminarNeuroscience

Hypothalamic control of internal states underlying social behaviors in mice

Tomomi Karigo
California Institute of Technology
Apr 25, 2021

Social interactions such as mating and fighting are driven by internal emotional states. How can we study internal states of an animal when it cannot tell us its subjective feelings? Especially when the meaning of the animal’s behavior is not clear to us, can we understand the underlying internal states of the animal? In this talk, I will introduce our recent work in which we used male mounting behavior in mice as an example to understand the underlying internal state of the animals. In many animal species, males exhibit mounting behavior toward females as part of the mating behavior repertoire. Interestingly, males also frequently show mounting behavior toward other males of the same species. It is not clear what the underlying motivation is - whether it is reproductive in nature or something distinct. Through detailed analysis of video and audio recordings during social interactions, we found that while male-directed and female-directed mounting behaviors are motorically similar, they can be distinguished by both the presence of ultrasonic vocalization during female-directed mounting (reproductive mounting) and the display of aggression following male-directed mounting (aggressive mounting). Using optogenetics, we further identified genetically defined neural populations in the medial preoptic area (MPOA) that mediate reproductive mounting and the ventrolateral ventromedial hypothalamus (VMHvl) that mediate aggressive mounting. In vivo microendocsopic imaging in MPOA and VMHvl revealed distinct neural ensembles that mainly encode either a reproductive or an aggressive state during which male or female directed mounting occurs. Together, these findings demonstrate that internal states are represented in the hypothalamus and that motorically similar behaviors exhibited under different contexts may reflect distinct internal states.

SeminarNeuroscienceRecording

A Cortical Circuit for Audio-Visual Predictions

Aleena Garner
Keller lab, FMI
Mar 9, 2021

Team work makes sensory streams work: our senses work together, learn from each other, and stand in for one another, the result of which is perception and understanding. Learned associations between stimuli in different sensory modalities can shape the way we perceive these stimuli (Mcgurk and Macdonald, 1976). During audio-visual associative learning, auditory cortex is thought to underlie multi-modal plasticity in visual cortex (McIntosh et al., 1998; Mishra et al., 2007; Zangenehpour and Zatorre, 2010). However, it is not well understood how processing in visual cortex is altered by an auditory stimulus that is predictive of a visual stimulus and what the mechanisms are that mediate such experience-dependent, audio-visual associations in sensory cortex. Here we describe a neural mechanism by which an auditory input can shape visual representations of behaviorally relevant stimuli through direct interactions between auditory and visual cortices. We show that the association of an auditory stimulus with a visual stimulus in a behaviorally relevant context leads to an experience-dependent suppression of visual responses in primary visual cortex (V1). Auditory cortex axons carry a mixture of auditory and retinotopically-matched visual input to V1, and optogenetic stimulation of these axons selectively suppresses V1 neurons responsive to the associated visual stimulus after, but not before, learning. Our results suggest that cross-modal associations can be stored in long-range cortical connections and that with learning these cross-modal connections function to suppress the responses to predictable input.

SeminarNeuroscienceRecording

Personality Evaluated: What Do Other People Really Think of You?

Jessie Sun
University of Pennsylvania
Mar 4, 2021

What do other people really think of you? In this talk, I highlight the unique perspective that other people have on the most consequential aspects of our personalities—how we treat others, our best and worst qualities, and our moral character. First, I compare how people thought they behaved with how they actually behaved in everyday life (based on observer ratings of unobtrusive audio recordings; 217 people, 2,519 observations). I show that when people think they are being kind (vs. rude), others do not necessarily agree. This suggests that people may have blind spots about how well they are treating others in the moment. Next, I compare what 463 people thought their own best and worst traits were with what their friends thought about them. The results reveal that friends are more likely to point out flaws in the prosocial and moral domains (e.g., “inconsiderate”, “selfish”, “manipulative”) than are people themselves. Does this imply that others might want us to be more moral? To find out, I compare what targets (N = 800) want to change about their own personalities with what their close others (N = 958) want to change about them. The results show that people don’t particularly want to be more moral, and their close others don’t want them to be more moral, either. I conclude with future directions on honest feedback as a pathway to self-insight and, ultimately, self-improvement.

SeminarNeuroscienceRecording

Brain dynamics underlying memory for continuous natural events

Janice Chen
Johns Hopkins
Aug 20, 2020

The world confronts our senses with a continuous stream of rapidly changing information. Yet, we experience life as a series of episodes or events, and in memory these pieces seem to become even further organized. How do we recall and give structure to this complex information? Recent studies have begun to examine these questions using naturalistic stimuli and behavior: subjects view audiovisual movies and then freely recount aloud their memories of the events. We find brain activity patterns that are unique to individual episodes, and which reappear during verbal recollection; robust generalization of these patterns across people; and memory effects driven by the structure of links between events in a narrative. These findings construct a picture of how we comprehend and recall real-world events that unfold continuously across time.

ePoster

Many, but not all, deep neural network audio models predict auditory cortex responses and exhibit hierarchical layer-region correspondence

COSYNE 2022

ePoster

Many, but not all, deep neural network audio models predict auditory cortex responses and exhibit hierarchical layer-region correspondence

COSYNE 2022

ePoster

Bayesian integration of audiovisual speech by DNN models is similar to human observers

Haotian Ma, Xiang Zhang, Zhengjia Wang, John F. Magnotti, Michael S. Beauchamp

COSYNE 2025

ePoster

Deciphering the mechanisms underlying auditory hyperexcitability in a genetic mouse model susceptible to audiogenic seizures

Sabrina Mechaussier, Mathilde Gagliardini, Carolina de Campos Pina, Olivier Postal, Typhaine Dupont, Boris Gourevitch, Nicolas Michalski

FENS Forum 2024

ePoster

Differential brain processes of newly-learned and overlearned audiovisual associations

Weiyong Xu, Xueqiao Li, Orsolya Kolozsvari, Aino Sorsa, Miriam Nokia, Jarmo Hämäläinen

FENS Forum 2024

ePoster

Dynamic and additive audiovisual integration in mice

George Booth, Timothy Sit, Célian Bimbard, Flóra Takács, Philip Coen, Kenneth Harris, Matteo Carandini

FENS Forum 2024

ePoster

Mesoscale synergy and redundancy in ferret sensory cortices during an audiovisual task

Loren Kocillari, Edgar Galindo-Leon, Florian Pieper, Stefano Panzeri, Andreas Engel

FENS Forum 2024

ePoster

Multimodal activity of mouse auditory cortex during audio-visual-motor virtual reality

Alessandro La Chioma, David Schneider

FENS Forum 2024

ePoster

The neural processing of natural audiovisual speech in noise in autism: A TRF approach

Theo Vanneau, Michael Crosse, John Foxe, Sophie Molholm

FENS Forum 2024

ePoster

Temporal integration of audio-visual stimuli in the mouse superior colliculus

Gaia Bianchini, Xavier Cano Ferrer, George Konstantinou, Maria Florencia Iacaruso

FENS Forum 2024