← Back

Autism Research

Topic spotlight
TopicWorld Wide

autism research

Discover seminars, jobs, and research tagged with autism research across World Wide.
3 curated items3 Seminars
Updated over 3 years ago
3 items · autism research
3 results
SeminarNeuroscience

From the cell biology of synaptic plasticity to SFARI

Kelsey Martin
Simons Foundation Autism Research Initiative
Apr 26, 2022
SeminarNeuroscience

Brain chart for the human lifespan

Richard Bethlehem
Director of Neuroimaging, Autism Research Centre, University of Cambridge, United Kingdom
Jan 18, 2022

Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight. Here, we built an interactive resource to benchmark brain morphology, www.brainchart.io, derived from any current or future sample of magnetic resonance imaging (MRI) data. With the goal of basing these reference charts on the largest and most inclusive dataset available, we aggregated 123,984 MRI scans from 101,457 participants aged from 115 days post-conception through 100 postnatal years, across more than 100 primary research studies. Cerebrum tissue volumes and other global or regional MRI metrics were quantified by centile scores, relative to non-linear trajectories of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones; showed high stability of individual centile scores over longitudinal assessments; and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared to non-centiled MRI phenotypes, and provided a standardised measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In sum, brain charts are an essential first step towards robust quantification of individual deviations from normative trajectories in multiple, commonly-used neuroimaging phenotypes. Our collaborative study proves the principle that brain charts are achievable on a global scale over the entire lifespan, and applicable to analysis of diverse developmental and clinical effects on human brain structure.

SeminarNeuroscience

Understanding the cellular and molecular landscape of autism spectrum disorders

Karun Singh
Krembil Research Institute, University Health Network, Toronto, Faculty of Medicine, University of Toronto
Mar 14, 2021

Large genomic studies of individuals with autism spectrum disorders (ASD) have revealed approximately 100-200 high risk genes. However, whether these genes function in similar or different signaling networks in brain cells (neurons) remains poorly studied. We are using proteomic technology to build an ASD-associated signaling network map as a resource for the Autism research community. This resource can be used to study Autism risk genes and understand how pathways are convergent, and how patient mutations change the interaction profile. In this presentation, we will present how we developed a pipeline using neurons to build protein-protein interaction profiles. We detected previously unknown interactions between different ASD risk genes that have never been linked together before, and for some genes, we identified new signaling pathways that have not been previously reported. This resource will be available to the research community and will foster collaborations between ASD researchers to help accelerate therapeutics for ASD and related disorders.