Avalanches
avalanches
Quasicriticality and the quest for a framework of neuronal dynamics
Critical phenomena abound in nature, from forest fires and earthquakes to avalanches in sand and neuronal activity. Since the 2003 publication by Beggs & Plenz on neuronal avalanches, a growing body of work suggests that the brain homeostatically regulates itself to operate near a critical point where information processing is optimal. At this critical point, incoming activity is neither amplified (supercritical) nor damped (subcritical), but approximately preserved as it passes through neural networks. Departures from the critical point have been associated with conditions of poor neurological health like epilepsy, Alzheimer's disease, and depression. One complication that arises from this picture is that the critical point assumes no external input. But, biological neural networks are constantly bombarded by external input. How is then the brain able to homeostatically adapt near the critical point? We’ll see that the theory of quasicriticality, an organizing principle for brain dynamics, can account for this paradoxical situation. As external stimuli drive the cortex, quasicriticality predicts a departure from criticality while maintaining optimal properties for information transmission. We’ll see that simulations and experimental data confirm these predictions and describe new ones that could be tested soon. More importantly, we will see how this organizing principle could help in the search for biomarkers that could soon be tested in clinical studies.
Bridging the gap between artificial models and cortical circuits
Artificial neural networks simplify complex biological circuits into tractable models for computational exploration and experimentation. However, the simplification of artificial models also undermines their applicability to real brain dynamics. Typical efforts to address this mismatch add complexity to increasingly unwieldy models. Here, we take a different approach; by reducing the complexity of a biological cortical culture, we aim to distil the essential factors of neuronal dynamics and plasticity. We leverage recent advances in growing neurons from human induced pluripotent stem cells (hiPSCs) to analyse ex vivo cortical cultures with only two distinct excitatory and inhibitory neuron populations. Over 6 weeks of development, we record from thousands of neurons using high-density microelectrode arrays (HD-MEAs) that allow access to individual neurons and the broader population dynamics. We compare these dynamics to two-population artificial networks of single-compartment neurons with random sparse connections and show that they produce similar dynamics. Specifically, our model captures the firing and bursting statistics of the cultures. Moreover, tightly integrating models and cultures allows us to evaluate the impact of changing architectures over weeks of development, with and without external stimuli. Broadly, the use of simplified cortical cultures enables us to use the repertoire of theoretical neuroscience techniques established over the past decades on artificial network models. Our approach of deriving neural networks from human cells also allows us, for the first time, to directly compare neural dynamics of disease and control. We found that cultures e.g. from epilepsy patients tended to have increasingly more avalanches of synchronous activity over weeks of development, in contrast to the control cultures. Next, we will test possible interventions, in silico and in vitro, in a drive for personalised approaches to medical care. This work starts bridging an important theoretical-experimental neuroscience gap for advancing our understanding of mammalian neuron dynamics.
NMC4 Short Talk: An optogenetic theory of stimulation near criticality
Recent advances in optogenetics allow for stimulation of neurons with sub-millisecond spike jitter and single neuron selectivity. Already this precision has revealed new levels of cortical sensitivity: stimulating tens of neurons can yield changes in the mean firing rate of thousands of similarly tuned neurons. This extreme sensitivity suggests that cortical dynamics are near criticality. Criticality is often studied in neural systems as a non-equilibrium thermodynamic process in which scale-free patterns of activity, called avalanches, emerge between distinct states of spontaneous activity. While criticality is well studied, it is still unclear what these distinct states of spontaneous activity are and what responses we expect from stimulation of this activity. By answering these questions, optogenetic stimulation will become a new avenue for approaching criticality and understanding cortical dynamics. Here, for the first time, we study the effects of optogenetic-like stimulation on a model near criticality. We study a model of Inhibitory/Excitatory (I/E) Leaky Integrate and Fire (LIF) spiking neurons which display a region of high sensitivity as seen in experiments. We find that this region of sensitivity is, indeed, near criticality. We derive the Dynamic Mean Field Theory of this model and find that the distinct states of activity are asynchrony and synchrony. We use our theory to characterize response to various types and strengths of optogenetic stimulation. Our model and theory predict that asynchronous, near-critical dynamics can have two qualitatively different responses to stimulation: one characterized by high sensitivity, discrete event responses, and high trial-to-trial variability, and another characterized by low sensitivity, continuous responses with characteristic frequencies, and low trial-to-trial variability. While both response types may be considered near-critical in model space, networks which are closest to criticality show a hybrid of these response effects.
Global AND Scale-Free? Spontaneous cortical dynamics between functional networks and cortico-hippocampal communication
Recent advancements in anatomical and functional imaging emphasize the presence of whole-brain networks organized according to functional and connectivity gradients, but how such structure shapes activity propagation and memory processes still lacks asatisfactory model. We analyse the fine-grained spatiotemporal dynamics of spontaneous activity in the entire dorsal cortex. through simultaneous recordings of wide-field voltage sensitive dye transients (VS), cortical ECoG, and hippocampal LFP in anesthetized mice. Both VS and ECoG show cortical avalanches. When measuring avalanches from the VS signal, we find a major deviation of the size scaling from the power-law distribution predicted by the criticality hypothesis and well approximated by the results from the ECoG. Breaking from scale-invariance, avalanches can thus be grouped in two regimes. Small avalanches consists of a limited number of co-activation modes involving a sub-set of cortical networks (related to the Default Mode Network), while larger avalanches involve a substantial portion of the cortical surface and can be clustered into two families: one immediately preceded by Retrosplenial Cortex activation and mostly involving medial-posterior networks, the other initiated by Somatosensory Cortex and extending preferentially along the lateral-anterior region. Rather than only differing in terms of size, these two set of events appear to be associated with markedly different brain-wide dynamical states: they are accompaniedby a shift in the hippocampal LFP, from the ripple band (smaller) to the gamma band (larger avalanches), and correspond to opposite directionality in the cortex-to-hippocampus causal relationship. These results provide a concrete description of global cortical dynamics, and shows how cortex in its entirety is involved in bi-directional communication in the hippocampus even in sleep-like states.
Explaining the coexistence of neural oscillations and avalanches in resting human brain
COSYNE 2023