Behavioural Methods
behavioural methods
Learning and updating structured knowledge
During our everyday lives, much of what we experience is familiar and predictable. We typically follow the same morning routine, take the same route to work, and encounter the same colleagues. However, every once in a while, we encounter a surprising event that violates our expectations. When we encounter such violations of our expectations, it is adaptive to update our internal model of the world in order to make better predictions in the future. The hippocampus is thought to support both the learning of the predictable structure of our environment, as well as the detection and encoding of violations. However, the hippocampus is a complex and heterogeneous structure, composed of different subfields that are thought to subserve different functions. As such, it is not yet known how the hippocampus accomplishes the learning and updating of structured knowledge. Using behavioral methods and high-resolution fMRI, I'll show that during learning of repeated and predicted events, hippocampal subfields differentially integrate and separate event representations, thus learning the structure of ongoing experience. I then move on to discuss how when events violate our predictions, there is a shift in communication between hippocampal subfields, potentially allowing for efficient encoding of the novel and surprising information. If time permits, I'll present an additional behavioral study showing that violations of predictions promote detailed memories. Together, these studies advance our understanding of how we adaptively learn and update our knowledge.
Understanding Perceptual Priors with Massive Online Experiments
One of the most important questions in psychology and neuroscience is understanding how the outside world maps to internal representations. Classical psychophysics approaches to this problem have a number of limitations: they mostly study low dimensional perpetual spaces, and are constrained in the number and diversity of participants and experiments. As ecologically valid perception is rich, high dimensional, contextual, and culturally dependent, these impediments severely bias our understanding of perceptual representations. Recent technological advances—the emergence of so-called “Virtual Labs”— can significantly contribute toward overcoming these barriers. Here I present a number of specific strategies that my group has developed in order to probe representations across a number of dimensions. 1) Massive online experiments can increase significantly the amount of participants and experiments that can be carried out in a single study, while also significantly diversifying the participant pool. We have developed a platform, PsyNet, that enables “experiments as code,” whereby the orchestration of computer servers, recruiting, compensation of participants, and data management is fully automated and every experiment can be fully replicated with one command line. I will demonstrate how PsyNet allows us to recruit thousands of participants for each study with a large number of control experimental conditions, significantly increasing our understanding of auditory perception. 2) Virtual lab methods also enable us to run experiments that are nearly impossible in a traditional lab setting. I will demonstrate our development of adaptive sampling, a set of behavioural methods that combine machine learning sampling techniques (Monte Carlo Markov Chains) with human interactions and allow us to create high-dimensional maps of perceptual representations with unprecedented resolution. 3) Finally, I will demonstrate how the aforementioned methods can be applied to the study of perceptual priors in both audition and vision, with a focus on our work in cross-cultural research, which studies how perceptual priors are influenced by experience and culture in diverse samples of participants from around the world.
Super-Recognizers: facts, fallacies, and the future
Over the past decade, the domain of face identity processing has seen a surging interest in inter-individual differences, with a focus on individuals with superior skills, so-called Super-Recognizers (SRs; Ramon et al., 2019; Russell et al., 2009). Their study can provide valuable insights into brain-behavior relationships and advance our understanding of neural functioning. Despite a decade of research, and similarly to the field of developmental prosopagnosia, a consensus on diagnostic criteria for SR identification is lacking. Consequently, SRs are currently identified either inconsistently, via suboptimal individual tests, or via undocumented collections of tests. This state of the field has two major implications. Firstly, our scientific understanding of SRs will remain at best limited. Secondly, the needs of government agencies interested in deploying SRs for real-life identity verification (e.g., policing) are unlikely to be met. To counteract these issues, I suggest the following action points. Firstly, based on our and others’ work suggesting novel and challenging tests of face cognition (Bobak et al., 2019; Fysh et al., in press; Stacchi et al., 2019), and my collaborations with international security agencies, I recommend novel diagnostic criteria for SR identification. These are currently being used to screen the Berlin State Police’s >25K employees before identifying SRs via bespoke testing procedures we have collaboratively developed over the past years. Secondly, I introduce a cohort of SRs identified using these criteria, which is being studied in-depth using behavioral methods, psychophysics, eye-tracking, and neuroimaging. Finally, I suggest data acquired for these individuals should be curated to develop and share best practices with researchers and practitioners, and to gain an accurate and transparent description of SR cases to exploit their informative value.
A paradoxical kind of sleep In Drosophila melanogaster
The dynamic nature of sleep in most animals suggests distinct stages which serve different functions. Genetic sleep induction methods in animal models provide a powerful way to disambiguate these stages and functions, although behavioural methods alone are insufficient to accurately identify what kind of sleep is being engaged. In Drosophila, activation of the dorsal fan-shaped body (dFB) promotes sleep, but it remains unclear what kind of sleep this is, how the rest of the fly brain is behaving, or if any specific sleep functions are being achieved. Here, we developed a method to record calcium activity from thousands of neurons across a volume of the fly brain during dFB-induced sleep, and we compared this to the effects of a sleep-promoting drug. We found that drug-induced spontaneous sleep decreased brain activity and connectivity, whereas dFB sleep was not different from wakefulness. Paradoxically, dFB-induced sleep was found to be even deeper than drug- induced sleep. When we probed the sleeping fly brain with salient visual stimuli, we found that the activity of visually-responsive neurons was blocked by dFB activation, confirming a disconnect from the external environment. Prolonged optogenetic dFB activation nevertheless achieved a significant sleep function, by correcting visual attention defects brought on by sleep deprivation. These results suggest that dFB activation promotes a distinct form of sleep in Drosophila, where brain activity and connectivity remain similar to wakefulness, but responsiveness to external sensory stimuli is profoundly suppressed.