Behavioural
behavioural significance
Ways to think about the brain
Historically, research on the brain has been working its way in from the outside world, hoping that such systematic exploration will take us some day to the middle and on through the middle to the output. Ever since the time of Aristotle, philosophers and scientists have assumed that the brain (or, more precisely, the mind) is initially a blank slate filled up gradually with experience in an outside-in manner. An alternative, brain-centric view, the one I am promoting, is that self-organized brain networks induce a vast repertoire of preformed neuronal patterns. While interacting with the world, some of these initially ‘nonsensical’ patterns acquire behavioral significance or meaning. Thus, experience is primarily a process of matching preexisting neuronal dynamics to events in the world. I suggest that perpetually active, internal dynamic is the source of cognition, a neuronal operation disengaged from immediate senses.
Synaptic, cellular, and circuit mechanisms for learning: insights from electric fish
Understanding learning in neural circuits requires answering a number of difficult questions: (1) What is the computation being performed and what is its behavioral significance? (2) What are the inputs required for the computation and how are they represented at the level of spikes? (3) What are the sites and rules governing plasticity, i.e. how do pre and post-synaptic activity patterns produce persistent changes in synaptic strength? (4) How does network connectivity and dynamics shape the computation being performed? I will discuss joint experimental and theoretical work addressing these questions in the context of the electrosensory lobe (ELL) of weakly electric mormyrid fish.