Belief
belief
A personal journey on understanding intelligence
The focus of this talk is not about my research in AI or Robotics but my own journey on trying to do research and understand intelligence in a rapidly evolving research landscape. I will trace my path from conducting early-stage research during graduate school, to working on practical solutions within a startup environment, and finally to my current role where I participate in more structured research at a major tech company. Through these varied experiences, I will provide different perspectives on research and talk about how my core beliefs on intelligence have changed and sometimes even been compromised. There are no lessons to be learned from my stories, but hopefully they will be entertaining.
Digital Traces of Human Behaviour: From Political Mobilisation to Conspiracy Narratives
Digital platforms generate unprecedented traces of human behaviour, offering new methodological approaches to understanding collective action, polarisation, and social dynamics. Through analysis of millions of digital traces across multiple studies, we demonstrate how online behaviours predict offline action: Brexit-related tribal discourse responds to real-world events, machine learning models achieve 80% accuracy in predicting real-world protest attendance from digital signals, and social validation through "likes" emerges as a key driver of mobilization. Extending this approach to conspiracy narratives reveals how digital traces illuminate psychological mechanisms of belief and community formation. Longitudinal analysis of YouTube conspiracy content demonstrates how narratives systematically address existential, epistemic, and social needs, while examination of alt-tech platforms shows how emotions of anger, contempt, and disgust correlate with violence-legitimating discourse, with significant differences between narratives associated with offline violence versus peaceful communities. This work establishes digital traces as both methodological innovation and theoretical lens, demonstrating that computational social science can illuminate fundamental questions about polarisation, mobilisation, and collective behaviour across contexts from electoral politics to conspiracy communities.
CNS Control of Peripheral Mitochondrial Form and Function: Mitokines
My laboratory has made an intriguing discovery that mitochondrial stress in one tissue can be communicated to distal tissues. We find that mitochondrial stress in the nervous system triggers the production of entities known as mitokines. These mitokines are discharged from the nervous system, orchestrating a response in peripheral tissues that extends the lifespan of C. elegans. The revelation came as a surprise, given the prevalent belief that cell autonomous mechanisms would underlie the relationship between mitochondrial function and aging. It was also surprising given the prevailing dogma that mitochondrial function must be increased, not decreased, to improve health and longevity. Our work also underscores the fact that mitochondria, which originated as a microbial entity and later evolved into an intracellular symbiont, have retained their capacity for intercommunication, now facilitated by signals from the nervous system. We hypothesize that this communication has evolved as a mechanism to reduce infection from pathogens.
Unmotivated bias
In this talk, I will explore how social affective biases arise even in the absence of motivational factors as an emergent outcome of the basic structure of social learning. In several studies, we found that initial negative interactions with some members of a group can cause subsequent avoidance of the entire group, and that this avoidance perpetuates stereotypes. Additional cognitive modeling discovered that approach and avoidance behavior based on biased beliefs not only influences the evaluative (positive or negative) impressions of group members, but also shapes the depth of the cognitive representations available to learn about individuals. In other words, people have richer cognitive representations of members of groups that are not avoided, akin to individualized vs group level categories. I will end presenting a series of multi-agent reinforcement learning simulations that demonstrate the emergence of these social-structural feedback loops in the development and maintenance of affective biases.
A predictive-processing account of psychosis
There has been increasing interest in the neurocomputational mechanisms underlying psychotic disorders in recent years. One promising approach is based on the theoretical framework of predictive processing, which proposes that inferences regarding the state of the world are made by combining prior beliefs with sensory signals. Delusions and hallucinations are the core symptoms of psychosis and often co-occur. Yet, different predictive-processing alterations have been proposed for these two symptom dimensions, according to which the relative weighting of prior beliefs in perceptual inference is decreased or increased, respectively. I will present recent behavioural, neuroimaging, and computational work that investigated perceptual decision-making under uncertainty and ambiguity to elucidate the changes in predictive processing that may give rise to psychotic experiences. Based on the empirical findings presented, I will provide a more nuanced predictive-processing account that suggests a common mechanism for delusions and hallucinations at low levels of the predictive-processing hierarchy, but still has the potential to reconcile apparently contradictory findings in the literature. This account may help to understand the heterogeneity of psychotic phenomenology and explain changes in symptomatology over time.
How People Form Beliefs
In this talk I will present our recent behavioural and neuroscience research on how the brain motivates itself to form particular beliefs and why it does so. I will propose that the utility of a belief is derived from the potential outcomes associated with holding it. Outcomes can be internal (e.g., positive/negative feelings) or external (e.g., material gain/loss), and only some are dependent on belief accuracy. We show that belief change occurs when the potential outcomes of holding it alters, for example when moving from a safe environment to a threatening environment. Our findings yield predictions about how belief formation alters as a function of mental health. We test these predictions using a linguistic analysis of participants’ web searches ‘in the wild’ to quantify the affective properties of information they consume and relate those to reported psychiatric symptoms. Finally, I will present a study in which we used our framework to alter the incentive structure of social media platforms to reduce the spread of misinformation and improve belief accuracy.
Is Theory of Mind Analogical? Evidence from the Analogical Theory of Mind cognitive model
Theory of mind, which consists of reasoning about the knowledge, belief, desire, and similar mental states of others, is a key component of social reasoning and social interaction. While it has been studied by cognitive scientists for decades, none of the prevailing theories of the processes that underlie theory of mind reasoning and development explain the breadth of experimental findings. I propose that this is because theory of mind is, like much of human reasoning, inherently analogical. In this talk, I will discuss several theory of mind findings from the psychology literature, the challenges they pose for our understanding of theory of mind, and bring in evidence from the Analogical Theory of Mind (AToM) cognitive model that demonstrates how these findings fit into an analogical understanding of theory of mind reasoning.
From Computation to Large-scale Neural Circuitry in Human Belief Updating
Many decisions under uncertainty entail dynamic belief updating: multiple pieces of evidence informing about the state of the environment are accumulated across time to infer the environmental state, and choose a corresponding action. Traditionally, this process has been conceptualized as a linear and perfect (i.e., without loss) integration of sensory information along purely feedforward sensory-motor pathways. Yet, natural environments can undergo hidden changes in their state, which requires a non-linear accumulation of decision evidence that strikes a tradeoff between stability and flexibility in response to change. How this adaptive computation is implemented in the brain has remained unknown. In this talk, I will present an approach that my laboratory has developed to identify evidence accumulation signatures in human behavior and neural population activity (measured with magnetoencephalography, MEG), across a large number of cortical areas. Applying this approach to data recorded during visual evidence accumulation tasks with change-points, we find that behavior and neural activity in frontal and parietal regions involved in motor planning exhibit hallmarks signatures of adaptive evidence accumulation. The same signatures of adaptive behavior and neural activity emerge naturally from simulations of a biophysically detailed model of a recurrent cortical microcircuit. The MEG data further show that decision dynamics in parietal and frontal cortex are mirrored by a selective modulation of the state of early visual cortex. This state modulation is (i) specifically expressed in the alpha frequency-band, (ii) consistent with feedback of evolving belief states from frontal cortex, (iii) dependent on the environmental volatility, and (iv) amplified by pupil-linked arousal responses during evidence accumulation. Together, our findings link normative decision computations to recurrent cortical circuit dynamics and highlight the adaptive nature of decision-related long-range feedback processing in the brain.
The Problem of Testimony
The talk will detail work drawing on behavioural results, formal analysis, and computational modelling with agent-based simulations to unpack the scale of the challenge humans face when trying to work out and factor in the reliability of their sources. In particular, it is shown how and why this task admits of no easy solution in the context of wider communication networks, and how this will affect the accuracy of our beliefs. The implications of this for the shift in the size and topology of our communication networks through the uncontrolled rise of social media are discussed.
Spatial uncertainty provides a unifying account of navigation behavior and grid field deformations
To localize ourselves in an environment for spatial navigation, we rely on vision and self-motion inputs, which only provide noisy and partial information. It is unknown how the resulting uncertainty affects navigation behavior and neural representations. Here we show that spatial uncertainty underlies key effects of environmental geometry on navigation behavior and grid field deformations. We develop an ideal observer model, which continually updates probabilistic beliefs about its allocentric location by optimally combining noisy egocentric visual and self-motion inputs via Bayesian filtering. This model directly yields predictions for navigation behavior and also predicts neural responses under population coding of location uncertainty. We simulate this model numerically under manipulations of a major source of uncertainty, environmental geometry, and support our simulations by analytic derivations for its most salient qualitative features. We show that our model correctly predicts a wide range of experimentally observed effects of the environmental geometry and its change on homing response distribution and grid field deformation. Thus, our model provides a unifying, normative account for the dependence of homing behavior and grid fields on environmental geometry, and identifies the unavoidable uncertainty in navigation as a key factor underlying these diverse phenomena.
Why Some Intelligent Agents are Conscious
In this talk I will present an account of how an agent designed or evolved to be intelligent may come to enjoy subjective experiences. First, the agent is stipulated to be capable of (meta)representing subjective ‘qualitative’ sensory information, in the sense that it can easily assess how exactly similar a sensory signal is to all other possible sensory signals. This information is subjective in the sense that it concerns how the different stimuli can be distinguished by the agent itself, rather than how physically similar they are. For this to happen, sensory coding needs to satisfy sparsity and smoothness constraints, which are known to facilitate metacognition and generalization. Second, this qualitative information can under some specific circumstances acquire an ‘assertoric force’. This happens when a certain self-monitoring mechanism decides that the qualitative information reliably tracks the current state of the world, and informs a general symbolic reasoning system of this fact. I will argue that the having of subjective conscious experiences amounts to nothing more than having qualitative sensory information acquiring an assertoric status within one’s belief system. When this happens, the perceptual content presents itself as reflecting the state of the world right now, in ways that seem undeniably rational to the agent. At the same time, without effort, the agent also knows what the perceptual content is like, in terms of how subjectively similar it is to all other possible precepts. I will discuss the computational benefits of this architecture, for which consciousness might have arisen as a byproduct.
NMC4 Short Talk: Transient neuronal suppression for exploitation of new sensory evidence
Decision-making in noisy environments with constant sensory evidence involves integrating sequentially-sampled evidence, a strategy formalized by diffusion models which is supported by decades behavioral and neural findings. By contrast, it is unknown whether this strategy is also used during decision-making when the underlying sensory evidence is expected to change. Here, we trained monkeys to identify the dominant color of a dynamically refreshed checkerboard pattern that doesn't become informative until after a variable delay. Animals' behavioral responses were briefly suppressed after an abrupt change in evidence, and many neurons in the frontal eye field displayed a corresponding dip in activity at this time, similar to the dip frequently observed after stimulus onset. Generalized drift-diffusion models revealed that behavior and neural activity were consistent with a brief suppression of motor output without a change in evidence accumulation itself, in contrast to the popular belief that evidence accumulation is paused or reset. These results suggest that a brief interruption in motor preparation is an important strategy for dealing with changing evidence during perceptual decision making.
Adaptive bottleneck to pallium for sequence memory, path integration and mixed selectivity representation
Spike-driven adaptation involves intracellular mechanisms that are initiated by neural firing and lead to the subsequent reduction of spiking rate followed by a recovery back to baseline. We report on long (>0.5 second) recovery times from adaptation in a thalamic-like structure in weakly electric fish. This adaptation process is shown via modeling and experiment to encode in a spatially invariant manner the time intervals between event encounters, e.g. with landmarks as the animal learns the location of food. These cells also come in two varieties, ones that care only about the time since the last encounter, and others that care about the history of encounters. We discuss how the two populations can share in the task of representing sequences of events, supporting path integration and converting from ego-to-allocentric representations. The heterogeneity of the population parameters enables the representation and Bayesian decoding of time sequences of events which may be put to good use in path integration and hilus neuron function in hippocampus. Finally we discuss how all the cells of this gateway to the pallium exhibit mixed selectivity of social features of their environment. The data and computational modeling further reveal that, in contrast to a long-held belief, these gymnotiform fish are endowed with a corollary discharge, albeit only for social signalling.
The role of high- and low-level factors in smooth pursuit of predictable and random motions
Smooth pursuit eye movements are among our most intriguing motor behaviors. They are able to keep the line of sight on smoothly moving targets with little or no overt effort or deliberate planning, and they can respond quickly and accurately to changes in the trajectory of motion of targets. Nevertheless, despite these seeming automatic characteristics, pursuit is highly sensitive to high-level factors, such as the choices made about attention, or beliefs about the direction of upcoming motion. Investigators have struggled for decades with the problem of incorporating both high- and low-level processes into a single coherent model. This talk will present an overview of the current state of efforts to incorporate high- and low-level influences, as well as new observations that add to our understanding of both types of influences. These observations (in contrast to much of the literature) focus on the directional properties of pursuit. Studies will be presented that show: (1) the direction of smooth pursuit made to pursue fields of noisy random dots depends on the relative reliability of the sensory signal and the expected motion direction; (2) smooth pursuit shows predictive responses that depend on the interpretation of cues that signal an impending collision; and (3) smooth pursuit during a change in target direction displays kinematic properties consistent with the well-known two-thirds power law. Implications for incorporating high- and low-level factors into the same framework will be discussed.
The Social Brain: From Models to Mental Health
Given the complex and dynamic nature of our social relationships, the human brain needs to quickly learn and adapt to new social situations. The breakdown of any of these computations could lead to social deficits, as observed in many psychiatric disorders. In this talk, I will present our recent neurocomputational and intracranial work that attempts to model both 1) how humans dynamically adapt beliefs about other people and 2) how individuals can exert influence over social others through model-based forward thinking. Lastly, I will present our findings of how impaired social computations might manifest in different disorders such as addiction, delusion, and autism. Taken together, these findings reveal the dynamic and proactive nature of human interactions as well as the clinical significance of these high-order social processes.
The role of the primate prefrontal cortex in inferring the state of the world and predicting change
In an ever-changing environment, uncertainty is omnipresent. To deal with this, organisms have evolved mechanisms that allow them to take advantage of environmental regularities in order to make decisions robustly and adjust their behavior efficiently, thus maximizing their chances of survival. In this talk, I will present behavioral evidence that animals perform model-based state inference to predict environmental state changes and adjust their behavior rapidly, rather than slowly updating choice values. This model-based inference process can be described using Bayesian change-point models. Furthermore, I will show that neural populations in the prefrontal cortex accurately predict behavioral switches, and that the activity of these populations is associated with Bayesian estimates. In addition, we will see that learning leads to the emergence of a high-dimensional representational subspace that can be reused when the animals re-learn a previously learned set of action-value associations. Altogether, these findings highlight the role of the PFC in representing a belief about the current state of the world.
Rule learning representation in the fronto-parietal network
We must constantly adapt the rules we use to guide our attention. To understand how the brain learns these rules, we designed a novel task that required monkeys to learn which color is the most rewarded at a given time (the current rule). However, just as in real life, the monkey was never explicitly told the rule. Instead, they had to learn it through trial and error by choosing a color, receiving feedback (amount of reward), and then updating their internal rule. After the monkeys reached a behavioral criterion, the rule changed. This change was not cued but could be inferred based on reward feedback. Behavioral modeling found monkeys used rewards to learn the rules. After the rule changed, animals adopted one of two strategies. If the change was small, reflected in a small reward prediction error, the animals continuously updated their rule. However, for large changes, monkeys ‘reset’ their belief about the rule and re-learned the rule from scratch. To understand the neural correlates of learning new rules, we recorded neurons simultaneously from the prefrontal and parietal cortex. We found that the strength of the rule representation increased with the certainty about the current rule, and that the certainty about the rule was represented both implicitly and explicitly in the population.
Race and the brain: Insights from the neural systems of emotion and decisions
Investigations of the neural systems mediating the processing of social groups defined by race, specifically Black and White race groups in American participants, reveals significant overlap with brain mechanisms involved in emotion. This talk will provide an overview of research on the neuroscience of race and emotion, focusing on implicit race attitudes. Implicit race attitudes are expressed without conscious effort and control, and contrast with explicit, conscious attitudes. In spite of sharp decline in the expression of explicit, negative attitudes towards outgroup race members over the last half century, negative implicit attitudes persist, even in the face of strong egalitarian goals and beliefs. Early research demonstrated that implicit, but not explicit, negative attitudes towards outgroup race members correlate with blood oxygenation level dependent (BOLD) signal in the amygdala – a region implicated in threat representations, as well as emotion’s influence on cognition. Building on this initial finding, we demonstrate how learning and decisions may be modulated by implicit race attitudes and involve neural systems mediating emotion, learning and choice. Finally, we discuss techniques that may diminish the unintentional expression of negative, implicit race attitudes.
Blindspot: Hidden Biases of Good People
Mahzarin Banaji and her colleague coined the term “implicit bias” in the mid-1990s to refer to behavior that occurs without conscious awareness. Today, Professor Banaji is Cabot Professor of Social Ethics in the Department of Psychology at Harvard University, a member of the American Academy of Arts and Sciences, the National Academy of Sciences and has received numerous awards for her scientific contributions. The purpose of the seminar, Blindspot: Hidden Biases of Good People, is to reveal the surprising and even perplexing ways in which we make errors in assessing and evaluating others when we recruit and hire, onboard and promote, lead teams, undertake succession planning, and work on behalf of our clients or the public we serve. It is Professor Banaji’s belief that people intend well and that the inconsistency we see, between values and behavior, comes from a lack of awareness. But because implicit bias is pervasive, we must rely on scientific evidence to “outsmart” our minds. If we do so, we will be more likely to reach the life goals we have chosen for ourselves and to serve better the organizations for which we work.
Neurosexism and the brain: how gender stereotypes can distort or even damage research
The ‘Hunt the Sex Difference’ agenda has informed brain research for decades, if not centuries. This talk aims to demonstrate how a fixed belief in differences between ‘male’ and ‘female’ brains can narrow and even distort the research process. This can include the questions that are asked, the methodology selected and the analytical pipeline. It can also powerfully inform the interpretation of results and the ‘spin’ used in the public communication of such research.
Towards better interoceptive biomarkers in computational psychiatry
Empirical evidence and theoretical models both increasingly emphasize the importance of interoceptive processing in mental health. Indeed, many mood and psychiatric disorders involve disturbed feelings and/or beliefs about the visceral body. However, current methods to measure interoceptive ability are limited in a number of ways, restricting the utility and interpretation of interoceptive biomarkers in psychiatry. I will present some newly developed measures and models which aim to improve our understanding of disordered brain-body interaction in psychiatric illnesses.
Neural correlates of belief updates in the mouse secondary motor cortex
To make judgments, brain must be able to infer the state of the world based on often incomplete and ambiguous evidence. To probe neural circuits that perform the computations underlying such judgments, we developed a behavioral task for mice that required them to detect sustained increases in the speed of a continuously varying visual stimulus. In this talk, I will present evidence that the responses of secondary motor cortex to stimulus fluctuations in this task are consistent with updates of the animal’s state of belief that the change has occurred. These results establish a framework for mechanistic inquiries into neural circuits underlying inference during perceptual decision-making.
Is there universality in biology?
It is sometimes said that there are two reasons why physics is so successful as a science. One is that it deals with very simple problems. The other is that it attempts to account only for universal aspects of systems at a desired level of description, with lower level phenomena subsumed into a small number of adjustable parameters. It is a widespread belief that this approach seems unlikely to be useful in biology, which is intimidatingly complex, where “everything has an exception”, and where there are a huge number of undetermined parameters. I will try to argue, nonetheless, that there are important, experimentally-testable aspects of biology that exhibit universality, and should be amenable to being tackled from a physics perspective. My suggestion is that this can lead to useful new insights into the existence and universal characteristics of living systems. I will try to justify this point of view by contrasting the goals and practices of the field of condensed matter physics with materials science, and then by extension, the goals and practices of the newly emerging field of “Physics of Living Systems” with biology. Specific biological examples that I will discuss include the following: Universal patterns of gene expression in cell biology Universal scaling laws in ecosystems, including the species-area law, Kleiber’s law, Paradox of the Plankton Universality of the genetic code Universality of thermodynamic utilization in microbial communities Universal scaling laws in the tree of life The question of what can be learned from studying universal phenomena in biology will also be discussed. Universal phenomena, by their very nature, shed little light on detailed microscopic levels of description. Yet there is no point in seeking idiosyncratic mechanistic explanations for phenomena whose explanation is found in rather general principles, such as the central limit theorem, that every microscopic mechanism is constrained to obey. Thus, physical perspectives may be better suited to answering certain questions such as universality than traditional biological perspectives. Concomitantly, it must be recognized that the identification and understanding of universal phenomena may not be a good answer to questions that have traditionally occupied biological scientists. Lastly, I plan to talk about what is perhaps the central question of universality in biology: why does the phenomenon of life occur at all? Is it an inevitable consequence of the laws of physics or some special geochemical accident? What methodology could even begin to answer this question? I will try to explain why traditional approaches to biology do not aim to answer this question, by comparing with our understanding of superconductivity as a physical phenomenon, and with the theory of universal computation. References Nigel Goldenfeld, Tommaso Biancalani, Farshid Jafarpour. Universal biology and the statistical mechanics of early life. Phil. Trans. R. Soc. A 375, 20160341 (14 pages) (2017). Nigel Goldenfeld and Carl R. Woese. Life is Physics: evolution as a collective phenomenon far from equilibrium. Ann. Rev. Cond. Matt. Phys. 2, 375-399 (2011).
It’s not what you look at that matters, it’s what you see
People frequently interpret the same information differently, based on their prior beliefs and views. This may occur in everyday settings, as when two friends are watching the same movie, but also in more consequential circumstances, such as when people interpret the same news differently based on their political views. The role of subjective knowledge in altering how the brain processes narratives has been explored mainly in controlled settings. I will present two projects that examines neural mechanisms underlying narrative interpretation “in the wild” -- how responses differ between two groups of people who interpret the same narrative in two coherent, but opposing ways. In the first project we manipulated participant’s prior knowledge to make them interpret the narrative differently, and found that responses in high-order areas, including the default mode network, language areas and subsets of the mirror neuron system, tend to be similar among people who share the same interpretation, but different from people with an opposing interpretation. In contrast to the active manipulation of participants’ interpretation in the first study, in the second (ongoing) project we examine these processes in a more ecological setting. Taking advantage of people’s natural tendencies to interpret the world through their own (political) filters, we examine these mechanisms while measuring their brain response to political movie clips. These studies are intended to deepen our understanding of the differences in subjective construal processes, by mapping their underlying brain mechanisms.
Rational thoughts in neural codes
First, we describe a new method for inferring the mental model of an animal performing a natural task. We use probabilistic methods to compute the most likely mental model based on an animal’s sensory observations and actions. This also reveals dynamic beliefs that would be optimal according to the animal’s internal model, and thus provides a practical notion of “rational thoughts.” Second, we construct a neural coding framework by which these rational thoughts, their computational dynamics, and actions can be identified within the manifold of neural activity. We illustrate the value of this approach by training an artificial neural network to perform a generalization of a widely used foraging task. We analyze the network’s behaviour to find rational thoughts, and successfully recover the neural properties that implemented those thoughts, providing a way of interpreting the complex neural dynamics of the artificial brain. Joint work with Zhengwei Wu, Minhae Kwon, Saurabh Daptardar, and Paul Schrater.
Brain wide distribution of prior belief constrains neural models of probabilistic inference
COSYNE 2023
Signatures of belief representations in recurrent neural networks and prefrontal cortex
COSYNE 2023
Geometric model manifold of space, time, and belief in hippocampal cognitive maps
COSYNE 2025
Bayesian inference during implicit perceptual belief updating in dynamic auditory perception
FENS Forum 2024
Novel two-step decision-making task for belief-state representations in mice
FENS Forum 2024
Self-reported cognitive confidence and negative beliefs about thinking predict metacognitive sensitivity in a pilot transcranial direct current stimulation (tDCS) experiment
FENS Forum 2024