← Back

Belonging

Topic spotlight
TopicWorld Wide

belonging

Discover seminars, jobs, and research tagged with belonging across World Wide.
3 curated items3 Seminars
Updated about 2 years ago
3 items · belonging
3 results
SeminarPsychology

Perceptions of responsiveness and rejection in romantic relationships. What are the implications for individuals and relationship functioning?

Marianne Richter
University of Fribourg
Nov 26, 2023

From birth, human beings need to be embedded into social ties to function best, because other individuals can provide us with a sense of belonging, which is a fundamental human need. One of the closest bonds we build throughout our life is with our intimate partners. When the relationship involves intimacy and when both partners accept and support each other’s needs and goals (through perceived responsiveness) individuals experience an increase in relationship satisfaction as well as physical and mental well-being. However, feeling rejected by a partner may impair the feeling of connectedness and belonging, and affect emotional and behavioural responses. When we perceive our partner to be responsive to our needs or desires, in turn we naturally strive to respond positively and adequately to our partner’s needs and desires. This implies that individuals are interdependent, and changes in one partner prompt changes in the other. Evidence suggests that partners regulate themselves and co-regulate each other in their emotional, psychological, and physiological responses. However, such processes may threaten the relationship when partners face stressful situations or interactions, like the transition to parenthood or rejection. Therefore, in this presentation, I will provide evidence for the role of perceptions of being accepted or rejected by a significant other on individual and relationship functioning, while considering the contextual settings. The three studies presented here explore romantic relationships, and how perceptions of rejection and responsiveness from the partner impact both individuals, their physiological and their emotional responses, as well as their relationship dynamics.

SeminarNeuroscienceRecording

Geometry of concept learning

Haim Sompolinsky
The Hebrew University of Jerusalem and Harvard University
Jan 3, 2023

Understanding Human ability to learn novel concepts from just a few sensory experiences is a fundamental problem in cognitive neuroscience. I will describe a recent work with Ben Sorcher and Surya Ganguli (PNAS, October 2022) in which we propose a simple, biologically plausible, and mathematically tractable neural mechanism for few-shot learning of naturalistic concepts. We posit that the concepts that can be learned from few examples are defined by tightly circumscribed manifolds in the neural firing-rate space of higher-order sensory areas. Discrimination between novel concepts is performed by downstream neurons implementing ‘prototype’ decision rule, in which a test example is classified according to the nearest prototype constructed from the few training examples. We show that prototype few-shot learning achieves high few-shot learning accuracy on natural visual concepts using both macaque inferotemporal cortex representations and deep neural network (DNN) models of these representations. We develop a mathematical theory that links few-shot learning to the geometric properties of the neural concept manifolds and demonstrate its agreement with our numerical simulations across different DNNs as well as different layers. Intriguingly, we observe striking mismatches between the geometry of manifolds in intermediate stages of the primate visual pathway and in trained DNNs. Finally, we show that linguistic descriptors of visual concepts can be used to discriminate images belonging to novel concepts, without any prior visual experience of these concepts (a task known as ‘zero-shot’ learning), indicated a remarkable alignment of manifold representations of concepts in visual and language modalities. I will discuss ongoing effort to extend this work to other high level cognitive tasks.

SeminarNeuroscienceRecording

The Gist of False Memory

Shaul Hochstein
Hebrew University
Nov 23, 2020

It has long been known that when viewing a set of images, we misjudge individual elements as being closer to the mean than they are (Hollingworth, 1910) and recall seeing the (absent) set mean (Deese, 1959; Roediger & McDermott (1995). Recent studies found that viewing sets of images, simultaneously or sequentially, leads to perception of set statistics (mean, range) with poor memory for individual elements. Ensemble perception was found for sets of simple images (e.g. circles varying in size or brightness; lines of varying orientation), complex objects (e.g. faces of varying emotion), as well as for objects belonging to the same category. When the viewed set does not include its mean or prototype, nevertheless, observers report and act as if they have seen this central image or object – a form of false memory. Physiologically, detailed sensory information at cortical input levels is processed hierarchically to form an integrated scene gist at higher levels. However, we are aware of the gist before the details. We propose that images and objects belonging to a set or category are represented as their gist, mean or prototype, plus individual differences from that gist. Under constrained viewing conditions, only the gist is perceived and remembered. This theory also provides a basis for compressed neural representation. Extending this theory to scenes and episodes supplies a generalized basis for false memories. They seem right, match generalized expectations, so are believable without challenging examination. This theory could be tested by analyzing the typicality of false memories, compared to rejected alternatives.