← Back

Beta Rhythms

Topic spotlight
TopicWorld Wide

beta rhythms

Discover seminars, jobs, and research tagged with beta rhythms across World Wide.
3 curated items3 Seminars
Updated about 4 years ago
3 items · beta rhythms
3 results
SeminarNeuroscience

Cognition is Rhythm

Earl K. Miller
Picower Institute for Learning and Memory at the Massachusetts Institute of Technology
Nov 1, 2021

Working memory is the sketchpad of consciousness, the fundamental mechanism the brain uses to gain volitional control over its thoughts and actions. For the past 50 years, working memory has been thought to rely on cortical neurons that fire continuous impulses that keep thoughts “online”. However, new work from our lab has revealed more complex dynamics. The impulses fire sparsely and interact with brain rhythms of different frequencies. Higher frequency gamma (>35 Hz) rhythms help carry the contents of working memory while lower frequency alpha/beta (~8-30 Hz) rhythms act as control signals that gate access to and clear out working memory. In other words, a rhythmic dance between brain rhythms may underlie your ability to control your own thoughts.

SeminarNeuroscienceRecording

Interpreting the Mechanisms and Meaning of Sensorimotor Beta Rhythms with the Human Neocortical Neurosolver (HNN) Neural Modeling Software

Stephanie Jones
Brown University
Sep 7, 2021

Electro- and magneto-encephalography (EEG/MEG) are the leading methods to non-invasively record human neural dynamics with millisecond temporal resolution. However, it can be extremely difficult to infer the underlying cellular and circuit level origins of these macro-scale signals without simultaneous invasive recordings. This limits the translation of E/MEG into novel principles of information processing, or into new treatment modalities for neural pathologies. To address this need, we developed the Human Neocortical Neurosolver (HNN: https://hnn.brown/edu ), a new user-friendly neural modeling tool designed to help researchers and clinicians interpret human imaging data. A unique feature of HNN’s model is that it accounts for the biophysics generating the primary electric currents underlying such data, so simulation results are directly comparable to source localized data. HNN is being constructed with workflows of use to study some of the most commonly measured E/MEG signals including event related potentials, and low frequency brain rhythms. In this talk, I will give an overview of this new tool and describe an application to study the origin and meaning of 15-29Hz beta frequency oscillations, known to be important for sensory and motor function. Our data showed that in primary somatosensory cortex these oscillations emerge as transient high power ‘events’. Functionally relevant differences in averaged power reflected a difference in the number of high-power beta events per trial (“rate”), as opposed to changes in event amplitude or duration. These findings were consistent across detection and attention tasks in human MEG, and in local field potentials from mice performing a detection task. HNN modeling led to a new theory on the circuit origin of such beta events and suggested beta causally impacts perception through layer specific recruitment of cortical inhibition, with support from invasive recordings in animal models and high-resolution MEG in humans. In total, HNN provides an unpresented biophysically principled tool to link mechanism to meaning of human E/MEG signals.

SeminarNeuroscienceRecording

Working Memory 2.0

Earl Miller
Picower Institute, MIT
May 6, 2020

Working memory is the sketchpad of consciousness, the fundamental mechanism the brain uses to gain volitional control over its thoughts and actions. For the past 50 years, working memory has been thought to rely on cortical neurons that fire continuous impulses that keep thoughts “online”. However, new work from our lab has revealed more complex dynamics. The impulses fire sparsely and interact with brain rhythms of different frequencies. Higher frequency gamma (> 35 Hz) rhythms help carry the contents of working memory while lower frequency alpha/beta (~8-30 Hz) rhythms act as control signals that gate access to and clear out working memory. In other words, a rhythmic dance between brain rhythms may underlie your ability to control your own thoughts.