Biologically Realistic
biologically realistic
Prof. Dr. Jakob Macke
We have several openings for Postdoctoral Researchers to work at the intersection of Machine Learning and Computational Neuroscience funded by the ERC Consolidator Grant “DeepCoMechTome: Using deep learning to understand computations in neural circuits with Connectome-constrained Mechanistic Models“. The goal of DeepCoMechTome is to develop simulation-based machine learning tools that will make it possible to build neural network models that are both biologically realistic and computationally powerful.
Virtual Brain Twins for Brain Medicine and Epilepsy
Over the past decade we have demonstrated that the fusion of subject-specific structural information of the human brain with mathematical dynamic models allows building biologically realistic brain network models, which have a predictive value, beyond the explanatory power of each approach independently. The network nodes hold neural population models, which are derived using mean field techniques from statistical physics expressing ensemble activity via collective variables. Our hybrid approach fuses data-driven with forward-modeling-based techniques and has been successfully applied to explain healthy brain function and clinical translation including aging, stroke and epilepsy. Here we illustrate the workflow along the example of epilepsy: we reconstruct personalized connectivity matrices of human epileptic patients using Diffusion Tensor weighted Imaging (DTI). Subsets of brain regions generating seizures in patients with refractory partial epilepsy are referred to as the epileptogenic zone (EZ). During a seizure, paroxysmal activity is not restricted to the EZ, but may recruit other healthy brain regions and propagate activity through large brain networks. The identification of the EZ is crucial for the success of neurosurgery and presents one of the historically difficult questions in clinical neuroscience. The application of latest techniques in Bayesian inference and model inversion, in particular Hamiltonian Monte Carlo, allows the estimation of the EZ, including estimates of confidence and diagnostics of performance of the inference. The example of epilepsy nicely underwrites the predictive value of personalized large-scale brain network models. The workflow of end-to-end modeling is an integral part of the European neuroinformatics platform EBRAINS and enables neuroscientists worldwide to build and estimate personalized virtual brains.
A dynamical model of the visual cortex
In the past several years, I have been involved in building a biologically realistic model of the monkey visual cortex. Work on one of the input layers (4Ca) of the primary visual cortex (V1) is now nearly complete, and I would like to share some of what I have learned with the community. After a brief overview of the model and its capabilities, I would like to focus on three sets of results that represent three different aspects of the modeling. They are: (i) emergent E-I dynamics in local circuits; (ii) how visual cortical neurons acquire their ability to detect edges and directions of motion, and (iii) a view across the cortical surface: nonequilibrium steady states (in analogy with statistical mechanics) and beyond.
Neural Engineering: Building large-scale cognitive models of the brain
The Neural Engineering Framework has been used to create a wide variety of biologically realistic brain simulations that are capable of performing simple cognitive tasks (remembering a list, counting, etc.). This includes the largest existing functional brain model. This talk will describe this method, and show some examples of using it to take high-level cognitive algorithms and convert them into a neural network that implements those algorithms. Overall, this approach gives us new ways of thinking about how the brain works and what sorts of algorithms it is capable of performing.
Mean-field models for finite-size populations of spiking neurons
Firing-rate (FR) or neural-mass models are widely used for studying computations performed by neural populations. Despite their success, classical firing-rate models do not capture spike timing effects on the microscopic level such as spike synchronization and are difficult to link to spiking data in experimental recordings. For large neuronal populations, the gap between the spiking neuron dynamics on the microscopic level and coarse-grained FR models on the population level can be bridged by mean-field theory formally valid for infinitely many neurons. It remains however challenging to extend the resulting mean-field models to finite-size populations with biologically realistic neuron numbers per cell type (mesoscopic scale). In this talk, I present a mathematical framework for mesoscopic populations of generalized integrate-and-fire neuron models that accounts for fluctuations caused by the finite number of neurons. To this end, I will introduce the refractory density method for quasi-renewal processes and show how this method can be generalized to finite-size populations. To demonstrate the flexibility of this approach, I will show how synaptic short-term plasticity can be incorporated in the mesoscopic mean-field framework. On the other hand, the framework permits a systematic reduction to low-dimensional FR equations using the eigenfunction method. Our modeling framework enables a re-examination of classical FR models in computational neuroscience under biophysically more realistic conditions.
Biologically Realistic Computational Primitives of Neocortex Implemented on Neuromorphic Hardware Improve Vision Transformer Performance
COSYNE 2025
Simulated Language Acquisition in a Biologically Realistic Model of the Brain
COSYNE 2025