Topic spotlight
TopicWorld Wide

BMI

Discover seminars, jobs, and research tagged with BMI across World Wide.
66 curated items60 Seminars4 ePosters1 Position1 Conference
Updated in 2 days
66 items · BMI
66 results
SeminarNeuroscience

Developmental emergence of personality

Bassem Hassan
Paris Brain Institute, ICM, France
Dec 9, 2025

The Nature versus Nurture debate has generally been considered from the lens of genome versus experience dichotomy and has dominated our thinking about behavioral individuality and personality traits. In contrast, the role of nonheritable noise during brain development in behavioral variation is understudied. Using the Drosophila melanogaster visual system, I will discuss our efforts to dissect how individuality in circuit wiring emerges during development, and how that helps generate individual behavioral variation.

Position

Hayder Amin

Research Group Leader
Dresden, Germany
Dec 5, 2025

This position is focused on developing a real-time bidirectional Brain-Machine interfacing framework, enabling active decoding and communication between a CMOS-chip and a rodent cortico-hippocampal circuit. The successful applicant will develop and implement biomimetic electronics to mimic/integrate the spatiotemporal information transmission within a large-scale hippocampal circuitry empowered by the enhanced computational function of the newly generated neurons. The outcome will profoundly impact science and society – it would offer a better tool for understanding information coding in neural regenerative circuitry and potentially providing novel restorative treatments for neurodegenerative diseases and brain injuries. Apply here: https://jobs.dzne.de/de/jobs/60681/postdoctoral-researcher-fmd-in-biomimetic-hippocampal-prosthesis-802920211

SeminarNeuroscience

Spike train structure of cortical transcriptomic populations in vivo

Kenneth Harris
UCL, UK
Oct 28, 2025

The cortex comprises many neuronal types, which can be distinguished by their transcriptomes: the sets of genes they express. Little is known about the in vivo activity of these cell types, particularly as regards the structure of their spike trains, which might provide clues to cortical circuit function. To address this question, we used Neuropixels electrodes to record layer 5 excitatory populations in mouse V1, then transcriptomically identified the recorded cell types. To do so, we performed a subsequent recording of the same cells using 2-photon (2p) calcium imaging, identifying neurons between the two recording modalities by fingerprinting their responses to a “zebra noise” stimulus and estimating the path of the electrode through the 2p stack with a probabilistic method. We then cut brain slices and performed in situ transcriptomics to localize ~300 genes using coppaFISH3d, a new open source method, and aligned the transcriptomic data to the 2p stack. Analysis of the data is ongoing, and suggests substantial differences in spike time coordination between ET and IT neurons, as well as between transcriptomic subtypes of both these excitatory types.

SeminarNeuroscience

The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany

Marco Bertamini, David Brainard, Peter Dayan, Andrea van Doorn, Roland Fleming, Pascal Fries, Wilson S Geisler, Robbe Goris, Sheng He, Tadashi Isa, Tomas Knapen, Jan Koenderink, Larry Maloney, Keith May, Marcello Rosa, Jonathan Victor
Aug 21, 2025

Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.

SeminarNeuroscience

The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany

Marco Bertamini, David Brainard, Peter Dayan, Andrea van Doorn, Roland Fleming, Pascal Fries, Wilson S Geisler, Robbe Goris, Sheng He, Tadashi Isa, Tomas Knapen, Jan Koenderink, Larry Maloney, Keith May, Marcello Rosa, Jonathan Victor
Aug 20, 2025

Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.

SeminarNeuroscience

The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany

Marco Bertamini, David Brainard, Peter Dayan, Andrea van Doorn, Roland Fleming, Pascal Fries, Wilson S Geisler, Robbe Goris, Sheng He, Tadashi Isa, Tomas Knapen, Jan Koenderink, Larry Maloney, Keith May, Marcello Rosa, Jonathan Victor
Aug 19, 2025

Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.

SeminarNeuroscience

The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany

Marco Bertamini, David Brainard, Peter Dayan, Andrea van Doorn, Roland Fleming, Pascal Fries, Wilson S Geisler, Robbe Goris, Sheng He, Tadashi Isa, Tomas Knapen, Jan Koenderink, Larry Maloney, Keith May, Marcello Rosa, Jonathan Victor
Aug 18, 2025

Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.

SeminarNeuroscience

The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany

Marco Bertamini, David Brainard, Peter Dayan, Andrea van Doorn, Roland Fleming, Pascal Fries, Wilson S Geisler, Robbe Goris, Sheng He, Tadashi Isa, Tomas Knapen, Jan Koenderink, Larry Maloney, Keith May, Marcello Rosa, Jonathan Victor
Aug 17, 2025

Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.

SeminarNeuroscience

The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany

Marco Bertamini, David Brainard, Peter Dayan, Andrea van Doorn, Roland Fleming, Pascal Fries, Wilson S Geisler, Robbe Goris, Sheng He, Tadashi Isa, Tomas Knapen, Jan Koenderink, Larry Maloney, Keith May, Marcello Rosa, Jonathan Victor
Aug 14, 2025

Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.

SeminarNeuroscience

The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany

Marco Bertamini, David Brainard, Peter Dayan, Andrea van Doorn, Roland Fleming, Pascal Fries, Wilson S Geisler, Robbe Goris, Sheng He, Tadashi Isa, Tomas Knapen, Jan Koenderink, Larry Maloney, Keith May, Marcello Rosa, Jonathan Victor
Aug 13, 2025

Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.

SeminarNeuroscience

The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany

Marco Bertamini, David Brainard, Peter Dayan, Andrea van Doorn, Roland Fleming, Pascal Fries, Wilson S Geisler, Robbe Goris, Sheng He, Tadashi Isa, Tomas Knapen, Jan Koenderink, Larry Maloney, Keith May, Marcello Rosa, Jonathan Victor
Aug 12, 2025

Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.

SeminarNeuroscience

The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany

Marco Bertamini, David Brainard, Peter Dayan, Andrea van Doorn, Roland Fleming, Pascal Fries, Wilson S Geisler, Robbe Goris, Sheng He, Tadashi Isa, Tomas Knapen, Jan Koenderink, Larry Maloney, Keith May, Marcello Rosa, Jonathan Victor
Aug 11, 2025

Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.

SeminarNeuroscience

The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany

Marco Bertamini, David Brainard, Peter Dayan, Andrea van Doorn, Roland Fleming, Pascal Fries, Wilson S Geisler, Robbe Goris, Sheng He, Tadashi Isa, Tomas Knapen, Jan Koenderink, Larry Maloney, Keith May, Marcello Rosa, Jonathan Victor
Aug 10, 2025

Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.

SeminarNeuroscience

Neural mechanisms of optimal performance

Luca Mazzucato
University of Oregon
May 22, 2025

When we attend a demanding task, our performance is poor at low arousal (when drowsy) or high arousal (when anxious), but we achieve optimal performance at intermediate arousal. This celebrated Yerkes-Dodson inverted-U law relating performance and arousal is colloquially referred to as being "in the zone." In this talk, I will elucidate the behavioral and neural mechanisms linking arousal and performance under the Yerkes-Dodson law in a mouse model. During decision-making tasks, mice express an array of discrete strategies, whereby the optimal strategy occurs at intermediate arousal, measured by pupil, consistent with the inverted-U law. Population recordings from the auditory cortex (A1) further revealed that sound encoding is optimal at intermediate arousal. To explain the computational principle underlying this inverted-U law, we modeled the A1 circuit as a spiking network with excitatory/inhibitory clusters, based on the observed functional clusters in A1. Arousal induced a transition from a multi-attractor (low arousal) to a single attractor phase (high arousal), and performance is optimized at the transition point. The model also predicts stimulus- and arousal-induced modulations of neural variability, which we confirmed in the data. Our theory suggests that a single unifying dynamical principle, phase transitions in metastable dynamics, underlies both the inverted-U law of optimal performance and state-dependent modulations of neural variability.

SeminarNeuroscience

Neural Signal Propagation Atlas of C. elegans

Andrew Leifer
Princeton University, US
May 18, 2025

In the age of connectomics, it is increasingly important to understand how the nodes and edges of a brain's anatomical network, or "connectome," gives rise to neural signaling and neural function. I will present the first comprehensive brain-wide cell-resolved causal measurements of how neurons signal to one another in response to stimulation in the nematode C. elegans. I will compare this signal propagation atlas to the worm's known connectome to address fundamental questions of structure and function in the brain.

SeminarNeuroscience

Neural mechanisms of rhythmic motor control in Drosophila

John Tuthill
University of Washington, Seattle, USA
May 15, 2025

All animal locomotion is rhythmic,whether it is achieved through undulatory movement of the whole body or the coordination of articulated limbs. Neurobiologists have long studied locomotor circuits that produce rhythmic activity with non-rhythmic input, also called central pattern generators (CPGs). However, the cellular and microcircuit implementation of a walking CPG has not been described for any limbed animal. New comprehensive connectomes of the fruit fly ventral nerve cord (VNC) provide an opportunity to study rhythmogenic walking circuits at a synaptic scale.We use a data-driven network modeling approach to identify and characterize a putative walking CPG in the Drosophila leg motor system.

SeminarNeuroscience

Rett syndrome, MECP2 and therapeutic strategies

Rudolf Jaenisch
Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, USA
Dec 10, 2024

The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss two topics: (i) the use of gene editing as an approach to therapy and (ii) the role of MECP2 in gene expression (i) The mutation of the X-linked MECP2 gene is causative for the disease. In a female patient, every cell has a wt copy that is, however, in 50% of the cells located on the inactive X chromosome. We have used epigenetic gene editing tools to activate the wt MECP2 allele on the inactive X chromosome. (ii) MECP2 is thought to act as repressor of gene expression. I will present data which show that MECP2 binds to Pol II and acts as an activator for thousands of genes. The target genes are significantly enriched for Autism related genes. Our data challenge the established model of MECP2’s role in gene expression and suggest novel therapeutic approaches.

SeminarNeuroscience

↗ Clonal analysis at single cell level helps to understand neural crest development

Igor Adameyko
Karolinska & MedUni, Wien, Austria
Nov 12, 2024
SeminarNeuroscience

Decomposing motivation into value and salience

Philippe Tobler
Univesrity of Zurich
Oct 31, 2024
SeminarNeuroscience

Hippocampal sharp wave ripples for selection and consolidation of memories

György Buzsáki
New York University, USA
Oct 10, 2024
SeminarNeuroscience

Neural mechanisms governing the learning and execution of avoidance behavior

Mario Penzo
National Institute of Mental Health, Bethesda, USA
Jun 18, 2024

The nervous system orchestrates adaptive behaviors by intricately coordinating responses to internal cues and environmental stimuli. This involves integrating sensory input, managing competing motivational states, and drawing on past experiences to anticipate future outcomes. While traditional models attribute this complexity to interactions between the mesocorticolimbic system and hypothalamic centers, the specific nodes of integration have remained elusive. Recent research, including our own, sheds light on the midline thalamus's overlooked role in this process. We propose that the midline thalamus integrates internal states with memory and emotional signals to guide adaptive behaviors. Our investigations into midline thalamic neuronal circuits have provided crucial insights into the neural mechanisms behind flexibility and adaptability. Understanding these processes is essential for deciphering human behavior and conditions marked by impaired motivation and emotional processing. Our research aims to contribute to this understanding, paving the way for targeted interventions and therapies to address such impairments.

SeminarNeuroscience

Spatial Organization of Cellular Reactive States in Human Brain Cancer

Sten Linnarsson
Karolinska Institute Sweden
May 21, 2024
SeminarNeuroscience

The multi-phase plasticity supporting winner effect

Dayu Lin
NYU Neuroscience Institute, New York, USA
May 14, 2024

Aggression is an innate behavior across animal species. It is essential for competing for food, defending territory, securing mates, and protecting families and oneself. Since initiating an attack requires no explicit learning, the neural circuit underlying aggression is believed to be genetically and developmentally hardwired. Despite being innate, aggression is highly plastic. It is influenced by a wide variety of experiences, particularly winning and losing previous encounters. Numerous studies have shown that winning leads to an increased tendency to fight while losing leads to flight in future encounters. In the talk, I will present our recent findings regarding the neural mechanisms underlying the behavioral changes caused by winning.

SeminarNeuroscience

A novel tool to combat stress (-hormone receptor) signatures

Katharina Gapp
Department of Heath Science and Technology, ETZH, Switzerland
Apr 23, 2024
SeminarNeuroscience

Mitochondrial diversity in the mouse and human brain

Martin Picard
Columbia University, New York, USA
Apr 16, 2024

The basis of the mind, of mental states, and complex behaviors is the flow of energy through microscopic and macroscopic brain structures. Energy flow through brain circuits is powered by thousands of mitochondria populating the inside of every neuron, glial, and other nucleated cell across the brain-body unit. This seminar will cover emerging approaches to study the mind-mitochondria connection and present early attempts to map the distribution and diversity of mitochondria across brain tissue. In rodents, I will present convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct behaviorally-relevant mitochondrial phenotypes exist across large-scale mouse brain networks. Extending these findings to the human brain, I will present a developing systematic biochemical and molecular map of mitochondrial variation across cortical and subcortical brain structures, representing a foundation to understand the origin of complex energy patterns that give rise to the human mind.

SeminarNeuroscience

Thalamocortical feedback circuits selectively control pyramidal neuron excitability

Anthony Holtmaat
University of Geneva, Switzerland
Apr 9, 2024
SeminarNeuroscience

Learning produces a hippocampal cognitive map in the form of an orthogonalized state machine

Nelson Spruston
Janelia, Ashburn, USA
Mar 5, 2024

Cognitive maps confer animals with flexible intelligence by representing spatial, temporal, and abstract relationships that can be used to shape thought, planning, and behavior. Cognitive maps have been observed in the hippocampus, but their algorithmic form and the processes by which they are learned remain obscure. Here, we employed large-scale, longitudinal two-photon calcium imaging to record activity from thousands of neurons in the CA1 region of the hippocampus while mice learned to efficiently collect rewards from two subtly different versions of linear tracks in virtual reality. The results provide a detailed view of the formation of a cognitive map in the hippocampus. Throughout learning, both the animal behavior and hippocampal neural activity progressed through multiple intermediate stages, gradually revealing improved task representation that mirrored improved behavioral efficiency. The learning process led to progressive decorrelations in initially similar hippocampal neural activity within and across tracks, ultimately resulting in orthogonalized representations resembling a state machine capturing the inherent struture of the task. We show that a Hidden Markov Model (HMM) and a biologically plausible recurrent neural network trained using Hebbian learning can both capture core aspects of the learning dynamics and the orthogonalized representational structure in neural activity. In contrast, we show that gradient-based learning of sequence models such as Long Short-Term Memory networks (LSTMs) and Transformers do not naturally produce such orthogonalized representations. We further demonstrate that mice exhibited adaptive behavior in novel task settings, with neural activity reflecting flexible deployment of the state machine. These findings shed light on the mathematical form of cognitive maps, the learning rules that sculpt them, and the algorithms that promote adaptive behavior in animals. The work thus charts a course toward a deeper understanding of biological intelligence and offers insights toward developing more robust learning algorithms in artificial intelligence.

SeminarNeuroscience

Stress changes risk-taking by altering Bayesian magnitude coding in parietal cortex

Christian Ruff
University of Zurich, Switzerland
Feb 27, 2024
SeminarNeuroscience

Hippocampal sequences in temporal association memory and information transfer

Nick Robinson
University of Edinburgh, UK
Jan 24, 2024
SeminarNeuroscience

Towards Human Systems Biology of Sleep/Wake Cycles: Phosphorylation Hypothesis of Sleep

Hiroki R. Ueda
Graduate School of Medicine, University of Tokyo
Jan 14, 2024

The field of human biology faces three major technological challenges. Firstly, the causation problem is difficult to address in humans compared to model animals. Secondly, the complexity problem arises due to the lack of a comprehensive cell atlas for the human body, despite its cellular composition. Lastly, the heterogeneity problem arises from significant variations in both genetic and environmental factors among individuals. To tackle these challenges, we have developed innovative approaches. These include 1) mammalian next-generation genetics, such as Triple CRISPR for knockout (KO) mice and ES mice for knock-in (KI) mice, which enables causation studies without traditional breeding methods; 2) whole-body/brain cell profiling techniques, such as CUBIC, to unravel the complexity of cellular composition; and 3) accurate and user-friendly technologies for measuring sleep and awake states, exemplified by ACCEL, to facilitate the monitoring of fundamental brain states in real-world settings and thus address heterogeneity in human.

SeminarNeuroscience

Modeling Primate Vision (and Language)

Martin Schrimpf
NeuroX, EPFL
Dec 5, 2023
SeminarNeuroscience

Movements and engagement during decision-making

Anne Churchland
University of California Los Angeles, USA
Nov 7, 2023

When experts are immersed in a task, a natural assumption is that their brains prioritize task-related activity. Accordingly, most efforts to understand neural activity during well-learned tasks focus on cognitive computations and task-related movements. Surprisingly, we observed that during decision-making, the cortex-wide activity of multiple cell types is dominated by movements, especially “uninstructed movements”, that are spontaneously expressed. These observations argue that animals execute expert decisions while performing richly varied, uninstructed movements that profoundly shape neural activity. To understand the relationship between these movements and decision-making, we examined the movements more closely. We tested whether the magnitude or the timing of the movements was correlated with decision-making performance. To do this, we partitioned movements into two groups: task-aligned movements that were well predicted by task events (such as the onset of the sensory stimulus or choice) and task independent movement (TIM) that occurred independently of task events. TIM had a reliable, inverse correlation with performance in head-restrained mice and freely moving rats. This hinted that the timing of spontaneous movements could indicate periods of disengagement. To confirm this, we compared TIM to the latent behavioral states recovered by a hidden Markov model with Bernoulli generalized linear model observations (GLM-HMM) and found these, again, to be inversely correlated. Finally, we examined the impact of these behavioral states on neural activity. Surprisingly, we found that the same movement impacts neural activity more strongly when animals are disengaged. An intriguing possibility is that these larger movement signals disrupt cognitive computations, leading to poor decision-making performance. Taken together, these observations argue that movements and cognitionare closely intertwined, even during expert decision-making.

SeminarPsychology

Use of Artificial Intelligence by Law Enforcement Authorities in the EU

Vangelis Zarkadoulas
Cyber & Data Security Lab, Vrije Universiteit Brussel
Oct 29, 2023

Recently, artificial intelligence (AI) has become a global priority. Rapid and ongoing technological advancements in AI have prompted European legislative initiatives to regulate its use. In April 2021, the European Commission submitted a proposal for a Regulation that would harmonize artificial intelligence rules across the EU, including the law enforcement sector. Consequently, law enforcement officials await the outcome of the ongoing inter-institutional negotiations (trilogue) with great anticipation, as it will define how to capitalize on the opportunities presented by AI and how to prevent criminals from abusing this emergent technology.

SeminarNeuroscience

Consolidation of remote contextual memory in the neocortical memory engram

Jun-Hyeong Cho
Oct 25, 2023

Recent studies identified memory engram neurons, a neuronal population that is recruited by initial learning and is reactivated during memory recall.  Memory engram neurons are connected to one another through memory engram synapses in a distributed network of brain areas.  Our central hypothesis is that an associative memory is encoded and consolidated by selective strengthening of engram synapses.  We are testing this hypothesis, using a combination of engram cell labeling, optogenetic/chemogenetic, electrophysiological, and virus tracing approaches in rodent models of contextual fear conditioning.  In this talk, I will discuss our findings on how synaptic plasticity in memory engram synapses contributes to the acquisition and consolidation of contextual fear memory in a distributed network of the amygdala, hippocampus, and neocortex.

SeminarNeuroscience

Spatial and Single Cell Genomics for Next Generation Neuroscience

Evan Macosko
Broad Institute, Cambridge, USA
Oct 11, 2023

The advent of next generation sequencing ushered in a ten-year period of exuberant technology development, enabling the quantification of gene expression and epigenetic features within individual cells, and within intact tissue sections.  In this seminar, I will outline our technological contributions, beginning with the development of Drop-seq, a method for high-throughput single cell analysis, followed by the development of Slide-seq, a technique for measuring genome-wide expression at 10 micron spatial resolution.  Using a combination of these techniques, we recently constructed a comprehensive cell type atlas of the adult mouse brain, positioning cell types within individual brain structures.  I will discuss the major findings from this dataset, including emerging principles of neurotransmission, and the localization of disease gene signatures to specific cell types.  Finally, I will introduce a new spatial technology, Slide-tags, that unifies single cell and spatial genomics into a single, highly scalable assay.

SeminarNeuroscience

From pecking order to ketamine - neural mechanism of social and emotional behavior

Hailan Hu
Zhejiang University School of Medicine, Hangzhou, China
Jun 20, 2023

Emotions and social interactions color our lives and shape our behaviors. Using animal models and engineered manipulations, we aim to understand how social and emotional behaviors are encoded in the brain, focusing on the neural circuits underlying dominance hierarchy and depression. This lecture will highlight our recent discoveries on how downward social mobility leads to depression; how ketamine tames depression by blocking burst firing in the brain’s antireward center; and, how glia-neuron interaction plays a surprising role in this process. I will also present our recent work on the mechanism underlying the sustained antidepressant activity of ketamine and its brain region specificity. With these results, we hope to illuminate on a more unified theory on ketamine’s mode of action and inspire new treatment strategies for depression.

SeminarNeuroscience

The neural circuits underlying planning and movement

Karel Svoboda
Allen Institute, Seattle, USA
May 10, 2023
SeminarNeuroscience

Obesity and Brain – Bidirectional Influences

Alain Dagher
McGill University
Apr 10, 2023

The regulation of body weight relies on homeostatic mechanisms that use a combination of internal signals and external cues to initiate and terminate food intake. Homeostasis depends on intricate communication between the body and the hypothalamus involving numerous neural and hormonal signals. However, there is growing evidence that higher-level cognitive function may also influence energy balance. For instance, research has shown that BMI is consistently linked to various brain, cognitive, and personality measures, implicating executive, reward, and attentional systems. Moreover, the rise in obesity rates over the past half-century is attributed to the affordability and widespread availability of highly processed foods, a phenomenon that contradicts the idea that food intake is solely regulated by homeostasis. I will suggest that prefrontal systems involved in value computation and motivation act to limit food overconsumption when food is scarce or expensive, but promote over-eating when food is abundant, an optimum strategy from an economic standpoint. I will review the genetic and neuroscience literature on the CNS control of body weight. I will present recent studies supporting a role of prefrontal systems in weight control. I will also present contradictory evidence showing that frontal executive and cognitive findings in obesity may be a consequence not a cause of increased hunger. Finally I will review the effects of obesity on brain anatomy and function. Chronic adiposity leads to cerebrovascular dysfunction, cortical thinning, and cognitive impairment. As the most common preventable risk factor for dementia, obesity poses a significant threat to brain health. I will conclude by reviewing evidence for treatment of obesity in adults to prevent brain disease.

SeminarNeuroscience

From spikes to factors: understanding large-scale neural computations

Mark M. Churchland
Columbia University, New York, USA
Apr 5, 2023

It is widely accepted that human cognition is the product of spiking neurons. Yet even for basic cognitive functions, such as the ability to make decisions or prepare and execute a voluntary movement, the gap between spikes and computation is vast. Only for very simple circuits and reflexes can one explain computations neuron-by-neuron and spike-by-spike. This approach becomes infeasible when neurons are numerous the flow of information is recurrent. To understand computation, one thus requires appropriate abstractions. An increasingly common abstraction is the neural ‘factor’. Factors are central to many explanations in systems neuroscience. Factors provide a framework for describing computational mechanism, and offer a bridge between data and concrete models. Yet there remains some discomfort with this abstraction, and with any attempt to provide mechanistic explanations above that of spikes, neurons, cell-types, and other comfortingly concrete entities. I will explain why, for many networks of spiking neurons, factors are not only a well-defined abstraction, but are critical to understanding computation mechanistically. Indeed, factors are as real as other abstractions we now accept: pressure, temperature, conductance, and even the action potential itself. I use recent empirical results to illustrate how factor-based hypotheses have become essential to the forming and testing of scientific hypotheses. I will also show how embracing factor-level descriptions affords remarkable power when decoding neural activity for neural engineering purposes.

SeminarNeuroscience

Circuit solutions for programming actions

Silvia Arber
University of Basel, Switzerland
Dec 1, 2022

The hippocampus is one of the few regions in the adult mammalian brain which is endowed with life-long neurogenesis. Despite intense investigation, it remains unclear how neurons newly-generated may retain unique functions that contribute to modulate hippocampal information processing and cognition. In this talk, I will present some recent findings revealing how enhanced forms of plasticity in adult-born neurons underlie the way they become incorporated into pre-existing networks in response to experience.

SeminarNeuroscience

Wave-front shaping and circuit optogenetics

Valentina Emiliani
Wavefront-engineering microscopy group, Vision Institute, Paris, France
Nov 22, 2022
SeminarNeuroscience

Intrinsic Geometry of a Combinatorial Sensory Neural Code for Birdsong

Tim Gentner
University of California, San Diego, USA
Nov 8, 2022

Understanding the nature of neural representation is a central challenge of neuroscience. One common approach to this challenge is to compute receptive fields by correlating neural activity with external variables drawn from sensory signals. But these receptive fields are only meaningful to the experimenter, not the organism, because only the experimenter has access to both the neural activity and knowledge of the external variables. To understand neural representation more directly, recent methodological advances have sought to capture the intrinsic geometry of sensory driven neural responses without external reference. To date, this approach has largely been restricted to low-dimensional stimuli as in spatial navigation. In this talk, I will discuss recent work from my lab examining the intrinsic geometry of sensory representations in a model vocal communication system, songbirds. From the assumption that sensory systems capture invariant relationships among stimulus features, we conceptualized the space of natural birdsongs to lie on the surface of an n-dimensional hypersphere. We computed composite receptive field models for large populations of simultaneously recorded single neurons in the auditory forebrain and show that solutions to these models define convex regions of response probability in the spherical stimulus space. We then define a combinatorial code over the set of receptive fields, realized in the moment-to-moment spiking and non-spiking patterns across the population, and show that this code can be used to reconstruct high-fidelity spectrographic representations of natural songs from evoked neural responses. Notably, we find that topological relationships among combinatorial codewords directly mirror acoustic relationships among songs in the spherical stimulus space. That is, the time-varying pattern of co-activity across the neural population expresses an intrinsic representational geometry that mirrors the natural, extrinsic stimulus space.  Combinatorial patterns across this intrinsic space directly represent complex vocal communication signals, do not require computation of receptive fields, and are in a form, spike time coincidences, amenable to biophysical mechanisms of neural information propagation.

SeminarNeuroscience

Setting network states via the dynamics of action potential generation

Susanne Schreiber
Humboldt University Berlin, Germany
Oct 4, 2022

To understand neural computation and the dynamics in the brain, we usually focus on the connectivity among neurons. In contrast, the properties of single neurons are often thought to be negligible, at least as far as the activity of networks is concerned. In this talk, I will contradict this notion and demonstrate how the biophysics of action-potential generation can have a decisive impact on network behaviour. Our recent theoretical work shows that, among regularly firing neurons, the somewhat unattended homoclinic type (characterized by a spike onset via a saddle homoclinic orbit bifurcation) particularly stands out: First, spikes of this type foster specific network states - synchronization in inhibitory and splayed-out/frustrated states in excitatory networks. Second, homoclinic spikes can easily be induced by changes in a variety of physiological parameters (like temperature, extracellular potassium, or dendritic morphology). As a consequence, such parameter changes can even induce switches in network states, solely based on a modification of cellular voltage dynamics. I will provide first experimental evidence and discuss functional consequences of homoclinic spikes for the design of efficient pattern-generating motor circuits in insects as well as for mammalian pathologies like febrile seizures. Our analysis predicts an interesting role for homoclinic action potentials as an integral part of brain dynamics in both health and disease.

SeminarNeuroscience

Development and evolution of neuronal connectivity

Alain Chédotal
Vision Institute, Paris, France
Sep 27, 2022

In most animal species including humans, commissural axons connect neurons on the left and right side of the nervous system. In humans, abnormal axon midline crossing during development causes a whole range of neurological disorders ranging from congenital mirror movements, horizontal gaze palsy, scoliosis or binocular vision deficits. The mechanisms which guide axons across the CNS midline were thought to be evolutionary conserved but our recent results suggesting that they differ across vertebrates.  I will discuss the evolution of visual projection laterality during vertebrate evolution.  In most vertebrates, camera-style eyes contain retinal ganglion cell (RGC) neurons projecting to visual centers on both sides of the brain. However, in fish, RGCs are thought to only innervate the contralateral side. Using 3D imaging and tissue clearing we found that bilateral visual projections exist in non-teleost fishes. We also found that the developmental program specifying visual system laterality differs between fishes and mammals. We are currently using various strategies to discover genes controlling the development of visual projections. I will also present ongoing work using 3D imaging techniques to study the development of the visual system in human embryo.

SeminarNeuroscience

Mitochondria and Monoamines - Better Together

Vidita Vaidya
Tata Institute of Fundamental Research, India
Jul 4, 2022
SeminarNeuroscience

Revealing the molecular and cellular architecture of the nervous system

Gioele La Manno
EPFL, Lausanne, Switzerland
Apr 5, 2022
SeminarNeuroscience

Artisans of brain wiring: neuron-microglia selective crosstalk in brain wiring and function

Emilia Favuzzi
Harvard Medical School
Mar 31, 2022
SeminarNeuroscience

Restructuring cortical circuits

Andreas Keller
University of Basel, Switzerland
Mar 29, 2022
SeminarNeuroscience

Neural cartography: Mapping the brain with X-ray and electron microscopy

Aaron Kuan
Harvard Medical School, USA
Mar 24, 2022
SeminarNeuroscience

The synaptic architecture of neuronal circuits underlying computation and cognition in the brain

Adrian Wanner
Paul Scherrer Institute, Switzerland
Mar 24, 2022
Conference

COSYNE 2022

Lisbon, Portugal
Mar 17, 2022

The annual Cosyne meeting provides an inclusive forum for the exchange of empirical and theoretical approaches to problems in systems neuroscience, in order to understand how neural systems function:contentReference[oaicite:2]{index=2}. The main meeting is single-track, with invited talks selected by the Executive Committee and additional talks and posters selected by the Program Committee based on submitted abstracts:contentReference[oaicite:3]{index=3}. The workshops feature in-depth discussion of current topics of interest in a small group setting:contentReference[oaicite:4]{index=4}.

SeminarNeuroscience

Epigenetic regulation of human brain organoid development in single cells

Fides Zenk
ETH Zurich, Switzerland
Feb 27, 2022
SeminarNeuroscience

Directing the timing of maturation in human pluripotent stem cell-derived neurons

Gabriele Ciceri
Memorial Sloan Kettering Cancer Center, New York, USA
Feb 17, 2022
SeminarNeuroscience

Spatio-temporal control of adult neurogenesis for on-demand brain plasticity

Zayna Chaker
University of Basel
Feb 6, 2022
SeminarNeuroscience

Synaptic molecules: Linking synaptic dysfunction to neuropsychiatric disorders

Jinye Dai
Stanford University, USA
Jan 31, 2022
SeminarNeuroscience

Adaptive Deep Brain Stimulation: Investigational System Development at the Edge of Clinical Brain Computer Interfacing

Jeffrey Herron
University of Washington
Dec 15, 2021

Over the last few decades, the use of deep brain stimulation (DBS) to improve the treatment of those with neurological movement disorders represents a critical success story in the development of invasive neurotechnology and the promise of brain-computer interfaces (BCI) to improve the lives of those suffering from incurable neurological disorders. In the last decade, investigational devices capable of recording and streaming neural activity from chronically implanted therapeutic electrodes has supercharged research into clinical applications of BCI, enabling in-human studies investigating the use of adaptive stimulation algorithms to further enhance therapeutic outcomes and improve future device performance. In this talk, Dr. Herron will review ongoing clinical research efforts in the field of adaptive DBS systems and algorithms. This will include an overview of DBS in current clinical practice, the development of bidirectional clinical-use research platforms, ongoing algorithm evaluation efforts, a discussion of current adoption barriers to be addressed in future work.

SeminarNeuroscience

Individual differences in visual (mis)perception: a multivariate statistical approach

Aline Cretenoud
Laboratory of Psychophysics, BMI, SV, EPFL
Dec 7, 2021

Common factors are omnipresent in everyday life, e.g., it is widely held that there is a common factor g for intelligence. In vision, however, there seems to be a multitude of specific factors rather than a strong and unique common factor. In my thesis, I first examined the multidimensionality of the structure underlying visual illusions. To this aim, the susceptibility to various visual illusions was measured. In addition, subjects were tested with variants of the same illusion, which differed in spatial features, luminance, orientation, or contextual conditions. Only weak correlations were observed between the susceptibility to different visual illusions. An individual showing a strong susceptibility to one visual illusion does not necessarily show a strong susceptibility to other visual illusions, suggesting that the structure underlying visual illusions is multifactorial. In contrast, there were strong correlations between the susceptibility to variants of the same illusion. Hence, factors seem to be illusion-specific but not feature-specific. Second, I investigated whether a strong visual factor emerges in healthy elderly and patients with schizophrenia, which may be expected from the general decline in perceptual abilities usually reported in these two populations compared to healthy young adults. Similarly, a strong visual factor may emerge in action video gamers, who often show enhanced perceptual performance compared to non-video gamers. Hence, healthy elderly, patients with schizophrenia, and action video gamers were tested with a battery of visual tasks, such as a contrast detection and orientation discrimination task. As in control groups, between-task correlations were weak in general, which argues against the emergence of a strong common factor for vision in these populations. While similar tasks are usually assumed to rely on similar neural mechanisms, the performances in different visual tasks were only weakly related to each other, i.e., performance does not generalize across visual tasks. These results highlight the relevance of an individual differences approach to unravel the multidimensionality of the visual structure.

SeminarNeuroscience

Brain-Machine Interfaces: Beyond Decoding

José del R. Millán
University of Texas at Austin
Sep 15, 2021

A brain-machine interface (BMI) is a system that enables users to interact with computers and robots through the voluntary modulation of their brain activity. Such a BMI is particularly relevant as an aid for patients with severe neuromuscular disabilities, although it also opens up new possibilities in human-machine interaction for able-bodied people. Real-time signal processing and decoding of brain signals are certainly at the heart of a BMI. Yet, this does not suffice for subjects to operate a brain-controlled device. In the first part of my talk I will review some of our recent studies, most involving participants with severe motor disabilities, that illustrate additional principles of a reliable BMI that enable users to operate different devices. In particular, I will show how an exclusive focus on machine learning is not necessarily the solution as it may not promote subject learning. This highlights the need for a comprehensive mutual learning methodology that foster learning at the three critical levels of the machine, subject and application. To further illustrate that BMI is more than just decoding, I will discuss how to enhance subject learning and BMI performance through appropriate feedback modalities. Finally, I will show how these principles translate to motor rehabilitation, where in a controlled trial chronic stroke patients achieved a significant functional recovery after the intervention, which was retained 6-12 months after the end of therapy.

SeminarNeuroscienceRecording

What about antibiotics for the treatment of the dyskinesia induced by L-DOPA?

Elaine Del-Bel
Professor of Physiology,Department of Morphology, Physiology and Basic Pathology, School of Dentistry, Ribeirão Preto (FORP), University of São Paulo.
Dec 13, 2020

L-DOPA-induced dyskinesia is a debilitating adverse effect of treating Parkinson’s disease with this drug. New therapeutic approaches that prevent or attenuate this side effect is clearly needed. Wistar adult male rats submitted to 6-hydroxydopamine-induced unilateral medial forebrain bundle lesions were treated with L-DOPA (oral or subcutaneous, 20 mg kg-1) once a day for 14 days. After this period, we tested if doxycycline (40 mg kg-1, intraperitoneal, a subantimicrobial dose) and COL-3 (50 and 100 nmol, intracerebroventricular) could reverse LID. In an additional experiment, doxycycline was also administered repeatedly with L-DOPA to verify if it would prevent LID development. A single injection of doxycycline or COL-3 together with L-DOPA attenuated the dyskinesia. Co-treatment with doxycycline from the first day of L-DOPA suppressed the onset of dyskinesia. The improved motor responses to L-DOPA remained intact in the presence of doxycycline or COL-3, indicating the preservation of L-DOPA-produced benefits. Doxycycline treatment was associated with decreased immunoreactivity of FosB, cyclooxygenase-2, the astroglial protein GFAP and the microglial protein OX-42 which are elevated in the basal ganglia of rats exhibiting dyskinesia. Doxycycline also decreased metalloproteinase-2/-9 activity, metalloproteinase-3 expression and reactive oxygen species production. Metalloproteinase-2/-9 activity and production of reactive oxygen species in the basal ganglia of dyskinetic rats showed a significant correlation with the intensity of dyskinesia. The present study demonstrates the anti-dyskinetic potential of doxycycline and its analog compound COL-3 in hemiparkinsonian rats. Given the long-established and safe clinical use of doxycycline, this study suggests that these drugs might be tested to reduce or to prevent L-DOPA-induced dyskinesia in Parkinson’s patients.

SeminarNeuroscience

Crowding and the Architecture of the Visual System

Adrien Doerig
Laboratory of Psychophysics, BMI, EPFL
Dec 1, 2020

Classically, vision is seen as a cascade of local, feedforward computations. This framework has been tremendously successful, inspiring a wide range of ground-breaking findings in neuroscience and computer vision. Recently, feedforward Convolutional Neural Networks (ffCNNs), inspired by this classic framework, have revolutionized computer vision and been adopted as tools in neuroscience. However, despite these successes, there is much more to vision. I will present our work using visual crowding and related psychophysical effects as probes into visual processes that go beyond the classic framework. In crowding, perception of a target deteriorates in clutter. We focus on global aspects of crowding, in which perception of a small target is strongly modulated by the global configuration of elements across the visual field. We show that models based on the classic framework, including ffCNNs, cannot explain these effects for principled reasons and identify recurrent grouping and segmentation as a key missing ingredient. Then, we show that capsule networks, a recent kind of deep learning architecture combining the power of ffCNNs with recurrent grouping and segmentation, naturally explain these effects. We provide psychophysical evidence that humans indeed use a similar recurrent grouping and segmentation strategy in global crowding effects. In crowding, visual elements interfere across space. To study how elements interfere over time, we use the Sequential Metacontrast psychophysical paradigm, in which perception of visual elements depends on elements presented hundreds of milliseconds later. We psychophysically characterize the temporal structure of this interference and propose a simple computational model. Our results support the idea that perception is a discrete process. Together, the results presented here provide stepping-stones towards a fuller understanding of the visual system by suggesting architectural changes needed for more human-like neural computations.

SeminarNeuroscienceRecording

Motor BMIs for probing sensorimotor control and parsing distributed learning

Amy Orsborn
University of Washington
Oct 8, 2020

Brain-machine interfaces (BMIs) change how the brain sends and receives information from the environment, opening new ways to probe brain function. For instance, motor BMIs allow us to precisely define and manipulate the sensorimotor loop which has enabled new insights into motor control and learning. In this talk, I’ll first present an example study where sensory-motor loop manipulations in BMI allowed us to probe feed-forward and feedback control mechanisms in ways that are not possible in the natural motor system. This study shed light on sensorimotor processing, and in turn led to state-of-the-art neural interface performance. I’ll then survey recent work that highlights the likelihood that BMIs, much like natural motor learning, engages multiple distributed learning mechanisms that can be carefully interrogated with BMI.

SeminarNeuroscienceRecording

A human-specific modifier of synaptic development, cortical circuit connectivity and function

Franck Polleux
Columbia University
Apr 29, 2020

The remarkable cognitive abilities characterizing humans has been linked to unique patterns of connectivity characterizing the neocortex. Comparative studies have shown that human cortical pyramidal neurons (PN) receive a significant increase of synaptic inputs when compared to other mammals, including non-human primates and rodents, but how this may relate to changes in cortical connectivity and function remained largely unknown. We previously identified a human-specific gene duplication (HSGD), SRGAP2C, that, when induced in mouse cortical PNs drives human-specific features of synaptic development, including a correlated increase in excitatory (E) and inhibitory (I) synapse density through inhibition of the ancestral SRGAP2A protein (Charrier et al. 2012; Fossatti et al. 2016; Schmidt et al. 2019). However, the origin and nature of this increased connectivity and its impact on cortical circuit function was unknown. I will present new results exploring these questions (see Schmidt et al. (2020) https://www.biorxiv.org/content/10.1101/852970v1). Using a combination of transgenic approaches and quantitative monosynaptic tracing, we discovered that humanization of SRGAP2C expression in the mouse cortex leads to a specific increase in local and long-range cortico-cortical inputs received by layer 2/3 cortical PNs. Moreover, using in vivo two-photon imaging in the barrel cortex of awake mice, we show that humanization of SRGAP2C expression increases the reliability and selectivity of sensory- evoked responses in layer 2/3 PNs. We also found that mice humanized for SRGAP2C in all cortical pyramidal neurons and throughout development are characterized by improved behavioural performance in a novel whisker-based sensory discrimination task compared to control wild-type mice. Our results suggest that the emergence of SRGAP2C during human evolution underlie a new substrate for human brain evolution whereby it led to increased local and long-range cortico-cortical connectivity and improved reliability of sensory-evoked cortical coding. References cited Charrier C.*, Joshi K. *, Coutinho-Budd J., Kim, J-E., Lambert N., de Marchena, J., Jin W-L., Vanderhaeghen P., Ghosh A., Sassa T, and Polleux F. (2012) Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny of spine maturation. Cell 149:923-935. * Co-first authors. Fossati M, Pizzarelli R, Schmidt ER, Kupferman JV, Stroebel D, Polleux F*, Charrier C*. (2016) SRGAP2 and Its Human-Specific Paralog Co-Regulate the Development of Excitatory and Inhibitory Synapses. Neuron. 91(2):356-69. * Co-senior corresponding authors. Schmidt E.R.E., Kupferman J.V., Stackmann M., Polleux F. (2019) The human-specific paralogs SRGAP2 and SRGAP2C differentially modulate SRGAP2A-dependent synaptic development. Scientific Rep. 9(1):18692. Schmidt E.R.E, Zhao H.T., Hillman E.M.C., Polleux F. (2020) Humanization of SRGAP2C expression increases cortico-cortical connectivity and reliability of sensory-evoked responses in mouse brain. Submitted. See also: https://www.biorxiv.org/content/10.1101/852970v1

ePoster

Multimodal cues displayed by submissive rats facilitate prosocial choices by dominants

COSYNE 2022

ePoster

Multimodal cues displayed by submissive rats facilitate prosocial choices by dominants

COSYNE 2022

ePoster

Associations between maternal pre-pregnancy BMI and white matter integrity in infants

Aylin Rosberg, Harri Merisaari, John D. Lewis, Niloofar Hashempour, Minna Lukkarinen, Jerod M. Rasmussen, Noora M. Scheinin, Linnea Karlsson, Hasse Karlsson, Jetro J. Tuulari

FENS Forum 2024

ePoster

Submillimeter targeting of the hippocampal formation with deep brain stimulation electrodes based on high-resolution MRI-guided neuronavigation in non-human primates

Ankur Gupta, Adrien Boissenin, Nikolaos Vardalakis, Mathieu Taillade, Hugues Orignac, Tho Hai Nguyen, Amirouche Sadoun, Fabien Wagner

FENS Forum 2024