Brain
brain communication
The embodied brain
Understanding the brain is not only intrinsically fascinating, but also highly relevant to increase our well-being since our brain exhibits a power over the body that makes it capable both of provoking illness or facilitating the healing process. Bearing in mind this dark force, brain sciences have undergone and will undergo an important revolution, redefining its boundaries beyond the cranial cavity. During this presentation, we will discuss about the communication between the brain and other systems that shapes how we feel the external word and how we think. We are starting to unravel how our organs talk to the brain and how the brain talks back. That two-way communication encompasses a complex, body-wide system of nerves, hormones and other signals that will be discussed. This presentation aims at challenging a long history of thinking of bodily regulation as separate from "higher" mental processes. Four centuries ago, René Descartes famously conceptualized the mind as being separate from the body, it is time now to embody our mind.
Gut-to-brain communication of nutritional information prioritizes courtship over feeding
The embodied brain
Understanding the brain is not only intrinsically fascinating, but also highly relevant to increase our well-being since our brain exhibits a power over the body that makes it capable both of provoking illness or facilitating the healing process. Bearing in mind this dark force, brain sciences have undergone and will undergo an important revolution, redefining its boundaries beyond the cranial cavity. During this presentation, we will discuss about the communication between the brain and other systems that shapes how we feel the external word and how we think. We are starting to unravel how our organs talk to the brain and how the brain talks back. That two-way communication encompasses a complex, body-wide system of nerves, hormones and other signals that will be discussed. This presentation aims at challenging a long history of thinking of bodily regulation as separate from "higher" mental processes. Four centuries ago, René Descartes famously conceptualized the mind as being separate from the body, it is time now to embody our mind.
Dysfunctional synaptic vesicle recycling – links to epilepsy
Accurate and synchronous neurotransmitter release is essential for brain communication and occurs when neurotransmitter-containing synaptic vesicles (SVs) fuse to release their content in response to neuronal activity. Neurotransmission is sustained by the process of SV recycling, which generates SVs locally at the presynapse. Until relatively recently it was believed that most mutations in genes that were essential for SV recycling would be incompatible with life, due to this fundamental role. However, this is not the case, with mutations in essential genes for SV fusion, retrieval and recycling identified in individuals with epilepsy. This seminar will cover our laboratory’s progress in determining how genetic mutations in people with epilepsy translate into presynaptic dysfunction and ultimately into seizure activity. The principal focus of these studies will be in vitro investigations of, 1) the biological role of these gene products and 2) how their dysfunction impacts SV recycling, using live fluorescence imaging of genetically-encoded reporters. The gene products to be discussed in more detail will be the SV protein SV2A, the protein kinase CDKL5 and the translation repressor FMRP.
Communication between the brain and the gut: Learnings from C. elegans
Long-term effects of diet-induced obesity on gut-brain communication
Rapid communication between the gut and the brain about recently consumed nutrients is critical for regulating food intake and maintaining energy homeostasis. We have shown that the infusion of nutrients directly into the gastrointestinal tract rapidly inhibits hunger-promoting AgRP neurons in the arcuate nucleus of the hypothalamus and suppresses subsequent feeding. The mechanism of this inhibition appears to be dependent upon macronutrient content, and can be recapitulated by a several hormones secreted in the gut in response to nutrient ingestion. In high-fat diet-induced obese mice, the response of AgRP neurons to nutrient-related stimuli are broadly attenuated. This attenuation is largely irreversible following weight loss and may represent a mechanism underlying difficulty with weight loss and propensity for weight regain in obesity.
An obesity-associated switch in vagal gut-brain communication modulates feeding behavior
FENS Forum 2024
Physical activity sensitizes vagal gut-brain communication underlying feeding control
FENS Forum 2024