Cascade Models
cascade models
Computational psychophysics at the intersection of theory, data and models
Behavioural measurements are often overlooked by computational neuroscientists, who prefer to focus on electrophysiological recordings or neuroimaging data. This attitude is largely due to perceived lack of depth/richness in relation to behavioural datasets. I will show how contemporary psychophysics can deliver extremely rich and highly constraining datasets that naturally interface with computational modelling. More specifically, I will demonstrate how psychophysics can be used to guide/constrain/refine computational models, and how models can be exploited to design/motivate/interpret psychophysical experiments. Examples will span a wide range of topics (from feature detection to natural scene understanding) and methodologies (from cascade models to deep learning architectures).