← Back

Central Pattern Generator

Topic spotlight
TopicWorld Wide

central pattern generator

Discover seminars, jobs, and research tagged with central pattern generator across World Wide.
8 curated items5 Seminars3 ePosters
Updated 7 months ago
8 items · central pattern generator
8 results
SeminarNeuroscience

Neural mechanisms of rhythmic motor control in Drosophila

John Tuthill
University of Washington, Seattle, USA
May 15, 2025

All animal locomotion is rhythmic,whether it is achieved through undulatory movement of the whole body or the coordination of articulated limbs. Neurobiologists have long studied locomotor circuits that produce rhythmic activity with non-rhythmic input, also called central pattern generators (CPGs). However, the cellular and microcircuit implementation of a walking CPG has not been described for any limbed animal. New comprehensive connectomes of the fruit fly ventral nerve cord (VNC) provide an opportunity to study rhythmogenic walking circuits at a synaptic scale.We use a data-driven network modeling approach to identify and characterize a putative walking CPG in the Drosophila leg motor system.

SeminarNeuroscienceRecording

Hypothalamic episode generators underlying the neural control of fertility

Allan Herbison
Department of Physiology, Development and Neuroscience, University of Cambridge
Nov 7, 2022

The hypothalamus controls diverse homeostatic functions including fertility. Neural episode generators are required to drive the intermittent pulsatile and surge profiles of reproductive hormone secretion that control gonadal function. Studies in genetic mouse models have been fundamental in defining the neural circuits forming these central pattern generators and the full range of in vitro and in vivo optogenetic and chemogenetic methodologies have enabled investigation into their mechanism of action. The seminar will outline studies defining the hypothalamic “GnRH pulse generator network” and current understanding of its operation to drive pulsatile hormone secretion.

SeminarNeuroscienceRecording

NMC4 Short Talk: Brain-inspired spiking neural network controller for a neurorobotic whisker system

Alberto Antonietti
University of Pavia
Dec 1, 2021

It is common for animals to use self-generated movements to actively sense the surrounding environment. For instance, rodents rhythmically move their whiskers to explore the space close to their body. The mouse whisker system has become a standard model to study active sensing and sensorimotor integration through feedback loops. In this work, we developed a bioinspired spiking neural network model of the sensorimotor peripheral whisker system, modelling trigeminal ganglion, trigeminal nuclei, facial nuclei, and central pattern generator neuronal populations. This network was embedded in a virtual mouse robot, exploiting the Neurorobotics Platform, a simulation platform offering a virtual environment to develop and test robots driven by brain-inspired controllers. Eventually, the peripheral whisker system was properly connected to an adaptive cerebellar network controller. The whole system was able to drive active whisking with learning capability, matching neural correlates of behaviour experimentally recorded in mice.

SeminarNeuroscienceRecording

Neural Population Dynamics for Skilled Motor Control

Britton Sauerbrei
Case Western Reserve University School of Medicine
Nov 3, 2021

The ability to reach, grasp, and manipulate objects is a remarkable expression of motor skill, and the loss of this ability in injury, stroke, or disease can be devastating. These behaviors are controlled by the coordinated activity of tens of millions of neurons distributed across many CNS regions, including the primary motor cortex. While many studies have characterized the activity of single cortical neurons during reaching, the principles governing the dynamics of large, distributed neural populations remain largely unknown. Recent work in primates has suggested that during the execution of reaching, motor cortex may autonomously generate the neural pattern controlling the movement, much like the spinal central pattern generator for locomotion. In this seminar, I will describe recent work that tests this hypothesis using large-scale neural recording, high-resolution behavioral measurements, dynamical systems approaches to data analysis, and optogenetic perturbations in mice. We find, by contrast, that motor cortex requires strong, continuous, and time-varying thalamic input to generate the neural pattern driving reaching. In a second line of work, we demonstrate that the cortico-cerebellar loop is not critical for driving the arm towards the target, but instead fine-tunes movement parameters to enable precise and accurate behavior. Finally, I will describe my future plans to apply these experimental and analytical approaches to the adaptive control of locomotion in complex environments.

SeminarNeuroscience

The retrotrapezoid nucleus: an integrative and interoceptive hub in neural control of breathing

Douglas A. Bayliss
University of Virginia
Apr 11, 2021

In this presentation, we will discuss the cellular and molecular properties of the retrotrapezoid nucleus (RTN), an integrative and interoceptive control node for the respiratory motor system. We will present the molecular profiling that has allowed definitive identification of a cluster of tonically active neurons that provide a requisite drive to the respiratory central pattern generator (CPG) and other pre-motor neurons. We will discuss the ionic basis for steady pacemaker-like firing, including by a large subthreshold oscillation; and for neuromodulatory influences on RTN activity, including by arousal state-dependent neurotransmitters and CO2/H+. The CO2/H+-dependent modulation of RTN excitability represents the sensory component of a homeostatic system by which the brain regulates breathing to maintain blood gases and tissue pH; it relies on two intrinsic molecular proton detectors, both a proton-activated G protein-coupled receptor (GPR4) and a proton-inhibited background K+ channel (TASK-2). We will also discuss downstream neurotransmitter signaling to the respiratory CPG, focusing especially on a newly-identified peptidergic modulation of the preBötzinger complex that becomes activated following birth and the initiation of air breathing. Finally, we will suggest how the cellular and molecular properties of RTN neurons identified in rodent models may contribute to understanding human respiratory disorders, such as congenital central hypoventilation syndrome (CCHS) and sudden infant death syndrome (SIDS).

ePoster

A neuronal central pattern generator to control the REM/non-REM sleep cycle

Juan Luis Riquelme, Lorenz Fenk, Gilles Laurent

Bernstein Conference 2024

ePoster

Connectome simulations reveal a putative central pattern generator microcircuit for fly walking

Sarah Pugliese, John Tuthill, Bing Brunton

COSYNE 2025

ePoster

Bifurcation analysis on a two-neuron model of central pattern generators for both oscillatory and convergent neuronal activities

Kotaro Muramatsu, Kori Hiroshi

FENS Forum 2024