Chemical Changes
chemical changes
Inducing short to medium neuroplastic effects with Transcranial Ultrasound Stimulation
Sound waves can be used to modify brain activity safely and transiently with unprecedented precision even deep in the brain - unlike traditional brain stimulation methods. In a series of studies in humans and non-human primates, I will show that Transcranial Ultrasound Stimulation (TUS) can have medium- to long-lasting effects. Multiple read-outs allow us to conclude that TUS can perturb neuronal tissues up to 2h after intervention, including changes in local and distributed brain network configurations, behavioural changes, task-related neuronal changes and chemical changes in the sonicated focal volume. Combined with multiple neuroimaging techniques (resting state functional Magnetic Resonance Imaging [rsfMRI], Spectroscopy [MRS] and task-related fMRI changes), this talk will focus on recent human TUS studies.
From function to cognition: New spectroscopic tools for studying brain neurochemistry in-vivo
In this seminar, I will present new methods in magnetic resonance spectroscopy (MRS) we’ve been working on in the lab. The talk will be divided into two parts. In the first, I will talk about neurochemical changes we observe in glutamate and GABA during various paradigms, including simple motors tasks and reinforcement learning. In the second part, I’ll present a new approach to MRS that focuses on measuring the relaxation times (T1, T2) of metabolites, which reflect changes to specific cellular microenvironments. I will explain why these can be exciting markers for studying several in-vivo pathologies, and also present some preliminary data from a cohort of mild cognitive impairment (MCI) patients, showing changes that correlate to cognitive decline.
Blood phosphorylated tau as biomarkers for Alzheimer’s disease
Alzheimer's disease (AD) is the most common cause of dementia, and its health and socioeconomic burdens are of major concern. Presently, a definite diagnosis of AD is established by examining brain tissue after death. These examinations focus on two major pathological hallmarks of AD in the brain: (i) amyloid plaques consisting of aggregated amyloid beta (Aβ) peptides and (ii) neurofibrillary tangles made of abnormally phosphorylated tau protein. In living individuals, AD diagnosis relies on two main approaches: (i) brain imaging of tau tangles and Aβ plaques using a technique called positron emission tomography (PET) and (ii) measuring biochemical changes in tau (including phosphorylated tau at threonine-181 [p-tau181]) and the Aβ42 peptide metabolized into CSF. Unlike Aβ42, CSF p-tau181 is highly specific for AD but its usability is restricted by the need of a lumbar puncture. Moreover, PET imaging is expensive and only available in specialised medical centres. Due to these shortcomings, a simple blood test that can detect disease-related changes in the brain is a high priority for AD research, clinical care and therapy testing. In this webinar, I will discuss the discovery of p-tau biomarkers in blood and the biochemistry of how these markers differ from those found in CSF. Furthermore, I will critically review the performance of blood p-tau biomarkers across the AD pathological process and how they associate with and predict Aβ and tau pathophysiological and neuropathological changes. Furthermore, I will evaluate the potential advantages, challenges and context of use of blood p-tau in clinical practice, therapeutic trials and population screening.