Chlamydomonas
chlamydomonas
Microalgal motility through day/night cycles
We have characterised the motility of the swimming microalga Chlamydomonas reinhardtii as a function of day/night cycles, to which the microalgal growth is entrained. Intriguingly, we find that the microalgae swim almost twice as fast during the night than during the day. I will connect this result with the bioenergetics of flagellar propulsion, discussing consequences for the distributions of cells in lab-based and environmental water columns.
Microorganism locomotion in viscoelastic fluids
Many microorganisms and cells function in complex (non-Newtonian) fluids, which are mixtures of different materials and exhibit both viscous and elastic stresses. For example, mammalian sperm swim through cervical mucus on their journey through the female reproductive tract, and they must penetrate the viscoelastic gel outside the ovum to fertilize. In micro-scale swimming the dynamics emerge from the coupled interactions between the complex rheology of the surrounding media and the passive and active body dynamics of the swimmer. We use computational models of swimmers in viscoelastic fluids to investigate and provide mechanistic explanations for emergent swimming behaviors. I will discuss how flexible filaments (such as flagella) can store energy from a viscoelastic fluid to gain stroke boosts due to fluid elasticity. I will also describe 3D simulations of model organisms such as C. Reinhardtii and mammalian sperm, where we use experimentally measured stroke data to separate naturally coupled stroke and fluid effects. We explore why strokes that are adapted to Newtonian fluid environments might not do well in viscoelastic environments.
Stochastic control of passive colloidal objects by micro-swimmers
The way single colloidal objects behave in presence of active forces arising from within the bulk of the system is crucial to many situations, notably biological and ecological (e.g. intra-cellular transport, predation), and potential medical or environmental applications (e.g. targeted delivery of cargoes, depollution of waters and soils). In this talk I will present experimental findings that my collaborators and I have obtained over the past years on the dynamics of single Brownian colloids in suspensions of biological micro-swimmers, especially the green alga Chlamydomonas reinhardtii. I'll show notably that spatial heterogeneities and anisotropies in the active particles statistics can control the preferential localisation of their passive counterparts. The results will be rationalized using theoretical approaches from hydrodynamics and stochastic processes.