Chloride
chloride
More than a beast growing in a passive brain: excitation and inhibition drive epilepsy and glioma progression
Gliomas are brain tumors formed by networks of connected tumor cells, nested in and interacting with neuronal networks. Neuronal activities interfere with tumor growth and occurrence of seizures affects glioma prognosis, while the developing tumor triggers seizures in the infiltrated cortex. Oncometabolites produced by tumor cells and neurotransmitters affect both the generation of epileptic activities by neurons and the growth of glioma cells through synaptic-related mechanisms, involving both GABAergic / Chloride pathways and glutamatergic signaling. From a clinical sight, epilepsy occurrence is beneficial to glioma prognosis but growing tumors are epileptogenic, which constitutes a paradox. This lecture will review how inhibitory and excitatory signaling drives glioma growth and how epileptic and oncological processes are interfering, with a special focus on the human brain.
Cortical seizure mechanisms: insights from calcium, glutamate and GABA imaging
Focal neocortical epilepsy is associated with intermittent brief population discharges (interictal spikes), which resemble sentinel spikes that often occur at the onset of seizures. Why interictal spikes self-terminate whilst seizures persist and propagate is incompletely understood, but is likely to relate to the intermittent collapse of feed-forward GABAergic inhibition. Inhibition could fail through multiple mechanisms, including (i) an attenuation or even reversal of the driving force for chloride in postsynaptic neurons because of intense activation of GABAA receptors, (ii) an elevation of potassium secondary to chloride influx leading to depolarization of neurons, or (iii) insufficient GABA release from interneurons. I shall describe the results of experiments using fluorescence imaging of calcium, glutamate or GABA in awake rodent models of neocortical epileptiform activity. Interictal spikes were accompanied by brief glutamate transients which were maximal at the initiation site and rapidly propagatedcentrifugally. GABA transients lasted longer than glutamate transients and were maximal ~1.5 mm from the focus. Prior to seizure initiation GABA transients were attenuated, whilst glutamate transients increased, consistent with a progressive failure of local inhibitory restraint. As seizures increased in frequency, there was a gradual increase in the spatial extent of spike-associated glutamate transients associated with interictal spikes. Neurotransmitter imaging thus reveals a progressive collapse of an annulus of feed-forward GABA release, allowing runaway recruitment of excitatory neurons as a fundamental mechanism underlying the escape of seizures from local inhibitory restraint.
Overdrawn at the ion bank: brain injury, neuronal chloride levels, and seizures
The many faces of KCC2 in the generation and suppression of seizures
KCC2, best known as the neuron-specific chloride extruder that sets the strength and polarity of GABAergic Cl-currents, is a multifunctional molecule which interacts with other ion-regulatory proteins and (structurally) with the neuronal cytoskeleton. Its multiple roles in the generation and suppression of seizures have been widely studied. In my talk, I will address some fundamental issues which are relevant in this field of research: What are EGABA shifts about? What is the role of KCC2 in shunting inhibition? What is meant by “the balance between excitation and inhibition” and, in this context, by the “NKCC1/KCC2 ratio”? Is down-regulation of KCC2 following neuronal trauma a manifestation of adaptive or maladaptive ionic plasticity? Under what conditions is K-Cl cotransport by KCC2 promoting seizures? Should we pay more attention to KCC2 as molecule involved in dendritic spine formation in brain areas such as the hippocampus? Most of these points are of potential importance also in the design of KCC2-targeting drugs and genetic manipulations aimed at combating seizures.
Chelerythrine chloride eliminates hypoxia-induced suppression of the AMPA neurotransmission in the visual retinocollicular pathway
FENS Forum 2024
Infantile ceroid neuro-lipofuscinosis: Linking autophagy, altered chloride homeostasis, and enhanced brain excitability
FENS Forum 2024
Imaging intracellular chloride changes using the FRET-based SuperClomeleon sensor
FENS Forum 2024
Non-canonical role of NKCC1 chloride transporter in neurons: A scaffold protein for SPAK kinase?
FENS Forum 2024
A novel fluorescent sensor reveals evoked chloride transients in vivo
FENS Forum 2024
A physical impact to the cord leads to early massive depolarization sustained by chloride ions with transient reflex suppression
FENS Forum 2024
The role of GABAergic inputs and chloride transporters in the activation and death of different Cajal-Retzius neuron subpopulations
FENS Forum 2024
Selective NKCC1 inhibitors for the treatment of brain disorders with defective chloride homeostasis
FENS Forum 2024