← Back

Choice

Topic spotlight
TopicWorld Wide

choice

Discover seminars, jobs, and research tagged with choice across World Wide.
98 curated items60 Seminars38 ePosters
Updated 4 days ago
98 items · choice
98 results
SeminarNeuroscience

Choice between methamphetamine and food is modulated by reinforcement interval and central drug metabolism

Marlaina Stocco
Western University
Dec 3, 2025
SeminarNeuroscience

Understanding reward-guided learning using large-scale datasets

Kim Stachenfeld
DeepMind, Columbia U
Jul 8, 2025

Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.

SeminarNeuroscience

Understanding reward-guided learning using large-scale datasets

Kim Stachenfeld
DeepMind, Columbia U
May 13, 2025

Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.

SeminarNeuroscienceRecording

Multisensory computations underlying flavor perception and food choice

Joost Maier
Wake Forest School of Medicine
Apr 16, 2025
SeminarNeuroscience

Decision and Behavior

Sam Gershman, Jonathan Pillow, Kenji Doya
Harvard University; Princeton University; Okinawa Institute of Science and Technology
Nov 28, 2024

This webinar addressed computational perspectives on how animals and humans make decisions, spanning normative, descriptive, and mechanistic models. Sam Gershman (Harvard) presented a capacity-limited reinforcement learning framework in which policies are compressed under an information bottleneck constraint. This approach predicts pervasive perseveration, stimulus‐independent “default” actions, and trade-offs between complexity and reward. Such policy compression reconciles observed action stochasticity and response time patterns with an optimal balance between learning capacity and performance. Jonathan Pillow (Princeton) discussed flexible descriptive models for tracking time-varying policies in animals. He introduced dynamic Generalized Linear Models (Sidetrack) and hidden Markov models (GLM-HMMs) that capture day-to-day and trial-to-trial fluctuations in choice behavior, including abrupt switches between “engaged” and “disengaged” states. These models provide new insights into how animals’ strategies evolve under learning. Finally, Kenji Doya (OIST) highlighted the importance of unifying reinforcement learning with Bayesian inference, exploring how cortical-basal ganglia networks might implement model-based and model-free strategies. He also described Japan’s Brain/MINDS 2.0 and Digital Brain initiatives, aiming to integrate multimodal data and computational principles into cohesive “digital brains.”

SeminarNeuroscience

Feedback-induced dispositional changes in risk preferences

Stefano Palmintieri
Institut National de la Santé et de la Recherche Médicale & École Normale Supérieure, Paris
Oct 28, 2024

Contrary to the original normative decision-making standpoint, empirical studies have repeatedly reported that risk preferences are affected by the disclosure of choice outcomes (feedback). Although no consensus has yet emerged regarding the properties and mechanisms of this effect, a widespread and intuitive hypothesis is that repeated feedback affects risk preferences by means of a learning effect, which alters the representation of subjective probabilities. Here, we ran a series of seven experiments (N= 538), tailored to decipher the effects of feedback on risk preferences. Our results indicate that the presence of feedback consistently increases risk-taking, even when the risky option is economically less advantageous. Crucially, risk-taking increases just after the instructions, before participants experience any feedback. These results challenge the learning account, and advocate for a dispositional effect, induced by the mere anticipation of feedback information. Epistemic curiosity and regret avoidance may drive this effect in partial and complete feedback conditions, respectively.

SeminarNeuroscience

Use case determines the validity of neural systems comparisons

Erin Grant
Gatsby Computational Neuroscience Unit & Sainsbury Wellcome Centre at University College London
Oct 15, 2024

Deep learning provides new data-driven tools to relate neural activity to perception and cognition, aiding scientists in developing theories of neural computation that increasingly resemble biological systems both at the level of behavior and of neural activity. But what in a deep neural network should correspond to what in a biological system? This question is addressed implicitly in the use of comparison measures that relate specific neural or behavioral dimensions via a particular functional form. However, distinct comparison methodologies can give conflicting results in recovering even a known ground-truth model in an idealized setting, leaving open the question of what to conclude from the outcome of a systems comparison using any given methodology. Here, we develop a framework to make explicit and quantitative the effect of both hypothesis-driven aspects—such as details of the architecture of a deep neural network—as well as methodological choices in a systems comparison setting. We demonstrate via the learning dynamics of deep neural networks that, while the role of the comparison methodology is often de-emphasized relative to hypothesis-driven aspects, this choice can impact and even invert the conclusions to be drawn from a comparison between neural systems. We provide evidence that the right way to adjudicate a comparison depends on the use case—the scientific hypothesis under investigation—which could range from identifying single-neuron or circuit-level correspondences to capturing generalizability to new stimulus properties

SeminarNeuroscienceRecording

Prosocial Learning and Motivation across the Lifespan

Patricia Lockwood
University of Birmingham, UK
Sep 9, 2024

2024 BACN Early-Career Prize Lecture Many of our decisions affect other people. Our choices can decelerate climate change, stop the spread of infectious diseases, and directly help or harm others. Prosocial behaviours – decisions that help others – could contribute to reducing the impact of these challenges, yet their computational and neural mechanisms remain poorly understood. I will present recent work that examines prosocial motivation, how willing we are to incur costs to help others, prosocial learning, how we learn from the outcomes of our choices when they affect other people, and prosocial preferences, our self-reports of helping others. Throughout the talk, I will outline the possible computational and neural bases of these behaviours, and how they may differ from young adulthood to old age.

SeminarNeuroscienceRecording

This decision matters: Sorting out the variables that lead to a single choice

Mathew Diamond
International School for Advanced Studies (SISSA)
Apr 17, 2024
SeminarNeuroscience

Visual mechanisms for flexible behavior

Marlene Cohen
University of Chicago
Jan 25, 2024

Perhaps the most impressive aspect of the way the brain enables us to act on the sensory world is its flexibility. We can make a general inference about many sensory features (rating the ripeness of mangoes or avocados) and map a single stimulus onto many choices (slicing or blending mangoes). These can be thought of as flexibly mapping many (features) to one (inference) and one (feature) to many (choices) sensory inputs to actions. Both theoretical and experimental investigations of this sort of flexible sensorimotor mapping tend to treat sensory areas as relatively static. Models typically instantiate flexibility through changing interactions (or weights) between units that encode sensory features and those that plan actions. Experimental investigations often focus on association areas involved in decision-making that show pronounced modulations by cognitive processes. I will present evidence that the flexible formatting of visual information in visual cortex can support both generalized inference and choice mapping. Our results suggest that visual cortex mediates many forms of cognitive flexibility that have traditionally been ascribed to other areas or mechanisms. Further, we find that a primary difference between visual and putative decision areas is not what information they encode, but how that information is formatted in the responses of neural populations, which is related to difference in the impact of causally manipulating different areas on behavior. This scenario allows for flexibility in the mapping between stimuli and behavior while maintaining stability in the information encoded in each area and in the mappings between groups of neurons.

SeminarNeuroscienceRecording

Tracking subjects' strategies in behavioural choice experiments at trial resolution

Mark Humphries
University of Nottingham
Dec 6, 2023

Psychology and neuroscience are increasingly looking to fine-grained analyses of decision-making behaviour, seeking to characterise not just the variation between subjects but also a subject's variability across time. When analysing the behaviour of each subject in a choice task, we ideally want to know not only when the subject has learnt the correct choice rule but also what the subject tried while learning. I introduce a simple but effective Bayesian approach to inferring the probability of different choice strategies at trial resolution. This can be used both for inferring when subjects learn, by tracking the probability of the strategy matching the target rule, and for inferring subjects use of exploratory strategies during learning. Applied to data from rodent and human decision tasks, we find learning occurs earlier and more often than estimated using classical approaches. Around both learning and changes in the rewarded rules the exploratory strategies of win-stay and lose-shift, often considered complementary, are consistently used independently. Indeed, we find the use of lose-shift is strong evidence that animals have latently learnt the salient features of a new rewarded rule. Our approach can be extended to any discrete choice strategy, and its low computational cost is ideally suited for real-time analysis and closed-loop control.

SeminarNeuroscience

Movements and engagement during decision-making

Anne Churchland
University of California Los Angeles, USA
Nov 7, 2023

When experts are immersed in a task, a natural assumption is that their brains prioritize task-related activity. Accordingly, most efforts to understand neural activity during well-learned tasks focus on cognitive computations and task-related movements. Surprisingly, we observed that during decision-making, the cortex-wide activity of multiple cell types is dominated by movements, especially “uninstructed movements”, that are spontaneously expressed. These observations argue that animals execute expert decisions while performing richly varied, uninstructed movements that profoundly shape neural activity. To understand the relationship between these movements and decision-making, we examined the movements more closely. We tested whether the magnitude or the timing of the movements was correlated with decision-making performance. To do this, we partitioned movements into two groups: task-aligned movements that were well predicted by task events (such as the onset of the sensory stimulus or choice) and task independent movement (TIM) that occurred independently of task events. TIM had a reliable, inverse correlation with performance in head-restrained mice and freely moving rats. This hinted that the timing of spontaneous movements could indicate periods of disengagement. To confirm this, we compared TIM to the latent behavioral states recovered by a hidden Markov model with Bernoulli generalized linear model observations (GLM-HMM) and found these, again, to be inversely correlated. Finally, we examined the impact of these behavioral states on neural activity. Surprisingly, we found that the same movement impacts neural activity more strongly when animals are disengaged. An intriguing possibility is that these larger movement signals disrupt cognitive computations, leading to poor decision-making performance. Taken together, these observations argue that movements and cognitionare closely intertwined, even during expert decision-making.

SeminarNeuroscience

Identifying mechanisms of cognitive computations from spikes

Tatiana Engel
Princeton
Nov 2, 2023

Higher cortical areas carry a wide range of sensory, cognitive, and motor signals supporting complex goal-directed behavior. These signals mix in heterogeneous responses of single neurons, making it difficult to untangle underlying mechanisms. I will present two approaches for revealing interpretable circuit mechanisms from heterogeneous neural responses during cognitive tasks. First, I will show a flexible nonparametric framework for simultaneously inferring population dynamics on single trials and tuning functions of individual neurons to the latent population state. When applied to recordings from the premotor cortex during decision-making, our approach revealed that populations of neurons encoded the same dynamic variable predicting choices, and heterogeneous firing rates resulted from the diverse tuning of single neurons to this decision variable. The inferred dynamics indicated an attractor mechanism for decision computation. Second, I will show an approach for inferring an interpretable network model of a cognitive task—the latent circuit—from neural response data. We developed a theory to causally validate latent circuit mechanisms via patterned perturbations of activity and connectivity in the high-dimensional network. This work opens new possibilities for deriving testable mechanistic hypotheses from complex neural response data.

SeminarNeuroscience

Decoding mental conflict between reward and curiosity in decision-making

Naoki Honda
Hiroshima University
Jul 9, 2023

Humans and animals are not always rational. They not only rationally exploit rewards but also explore an environment owing to their curiosity. However, the mechanism of such curiosity-driven irrational behavior is largely unknown. Here, we developed a decision-making model for a two-choice task based on the free energy principle, which is a theory integrating recognition and action selection. The model describes irrational behaviors depending on the curiosity level. We also proposed a machine learning method to decode temporal curiosity from behavioral data. By applying it to rat behavioral data, we found that the rat had negative curiosity, reflecting conservative selection sticking to more certain options and that the level of curiosity was upregulated by the expected future information obtained from an uncertain environment. Our decoding approach can be a fundamental tool for identifying the neural basis for reward–curiosity conflicts. Furthermore, it could be effective in diagnosing mental disorders.

SeminarNeuroscience

The Geometry of Decision-Making

Iain Couzin
University of Konstanz, Germany
May 23, 2023

Running, swimming, or flying through the world, animals are constantly making decisions while on the move—decisions that allow them to choose where to eat, where to hide, and with whom to associate. Despite this most studies have considered only on the outcome of, and time taken to make, decisions. Motion is, however, crucial in terms of how space is represented by organisms during spatial decision-making. Employing a range of new technologies, including automated tracking, computational reconstruction of sensory information, and immersive ‘holographic’ virtual reality (VR) for animals, experiments with fruit flies, locusts and zebrafish (representing aerial, terrestrial and aquatic locomotion, respectively), I will demonstrate that this time-varying representation results in the emergence of new and fundamental geometric principles that considerably impact decision-making. Specifically, we find that the brain spontaneously reduces multi-choice decisions into a series of abrupt (‘critical’) binary decisions in space-time, a process that repeats until only one option—the one ultimately selected by the individual—remains. Due to the critical nature of these transitions (and the corresponding increase in ‘susceptibility’) even noisy brains are extremely sensitive to very small differences between remaining options (e.g., a very small difference in neuronal activity being in “favor” of one option) near these locations in space-time. This mechanism facilitates highly effective decision-making, and is shown to be robust both to the number of options available, and to context, such as whether options are static (e.g. refuges) or mobile (e.g. other animals). In addition, we find evidence that the same geometric principles of decision-making occur across scales of biological organisation, from neural dynamics to animal collectives, suggesting they are fundamental features of spatiotemporal computation.

SeminarNeuroscience

Richly structured reward predictions in dopaminergic learning circuits

Angela J. Langdon
National Institute of Mental Health at National Institutes of Health (NIH)
May 16, 2023

Theories from reinforcement learning have been highly influential for interpreting neural activity in the biological circuits critical for animal and human learning. Central among these is the identification of phasic activity in dopamine neurons as a reward prediction error signal that drives learning in basal ganglia and prefrontal circuits. However, recent findings suggest that dopaminergic prediction error signals have access to complex, structured reward predictions and are sensitive to more properties of outcomes than learning theories with simple scalar value predictions might suggest. Here, I will present recent work in which we probed the identity-specific structure of reward prediction errors in an odor-guided choice task and found evidence for multiple predictive “threads” that segregate reward predictions, and reward prediction errors, according to the specific sensory features of anticipated outcomes. Our results point to an expanded class of neural reinforcement learning algorithms in which biological agents learn rich associative structure from their environment and leverage it to build reward predictions that include information about the specific, and perhaps idiosyncratic, features of available outcomes, using these to guide behavior in even quite simple reward learning tasks.

SeminarCognition

Beyond Volition

Patrick Haggard
University College London
Apr 26, 2023

Voluntary actions are actions that agents choose to make. Volition is the set of cognitive processes that implement such choice and initiation. These processes are often held essential to modern societies, because they form the cognitive underpinning for concepts of individual autonomy and individual responsibility. Nevertheless, psychology and neuroscience have struggled to define volition, and have also struggled to study it scientifically. Laboratory experiments on volition, such as those of Libet, have been criticised, often rather naively, as focussing exclusively on meaningless actions, and ignoring the factors that make voluntary action important in the wider world. In this talk, I will first review these criticisms, and then look at extending scientific approaches to volition in three directions that may enrich scientific understanding of volition. First, volition becomes particularly important when the range of possible actions is large and unconstrained - yet most experimental paradigms involve minimal response spaces. We have developed a novel paradigm for eliciting de novo actions through verbal fluency, and used this to estimate the elusive conscious experience of generativity. Second, volition can be viewed as a mechanism for flexibility, by promoting adaptation of behavioural biases. This view departs from the tradition of defining volition by contrasting internally-generated actions with externally-triggered actions, and instead links volition to model-based reinforcement learning. By using the context of competitive games to re-operationalise the classic Libet experiment, we identified a form of adaptive autonomy that allows agents to reduce biases in their action choices. Interestingly, this mechanism seems not to require explicit understanding and strategic use of action selection rules, in contrast to classical ideas about the relation between volition and conscious, rational thought. Third, I will consider volition teleologically, as a mechanism for achieving counterfactual goals through complex problem-solving. This perspective gives a key role in mediating between understanding and planning on the one hand, and instrumental action on the other hand. Taken together, these three cognitive phenomena of generativity, flexibility, and teleology may partly explain why volition is such an important cognitive function for organisation of human behaviour and human flourishing. I will end by discussing how this enriched view of volition can relate to individual autonomy and responsibility.

SeminarNeuroscienceRecording

Effect of Different Influences on Temporal Error Monitoring

Tutku Öztel
Koç University, Istanbul
Mar 28, 2023

Metacognition has long been defined as “cognition about cognition”. One of its aspects is the error monitoring ability, which includes being aware of one’s own errors without external feedback. This ability is mostly investigated in two-alternative forced choice tasks, where the performance has all or none nature in terms of accuracy. The previous literature documents the effect of different influences on the error monitoring ability, such as working memory, feedback and sensorimotor involvement. However, these demonstrations fall short of generalizing to the real life scenarios where the errors often have a magnitude and a direction. To bridge this gap, recent studies showed that humans could keep track of the magnitude and the direction of their errors in temporal, spatial and numerical domains in two metrics: confidence and short-long/few-more judgements. This talk will cover how the documented effects that are obtained in the two alternative forced choices tasks apply to the temporal error monitoring ability. Finally, how magnitude and direction monitoring (i.e., confidence and short-long judgements) can be differentiated as the two indices of temporal error monitoring ability will be discussed.

SeminarPsychology

A Better Method to Quantify Perceptual Thresholds : Parameter-free, Model-free, Adaptive procedures

Julien Audiffren
University of Fribourg
Feb 28, 2023

The ‘quantification’ of perception is arguably both one of the most important and most difficult aspects of perception study. This is particularly true in visual perception, in which the evaluation of the perceptual threshold is a pillar of the experimental process. The choice of the correct adaptive psychometric procedure, as well as the selection of the proper parameters, is a difficult but key aspect of the experimental protocol. For instance, Bayesian methods such as QUEST, require the a priori choice of a family of functions (e.g. Gaussian), which is rarely known before the experiment, as well as the specification of multiple parameters. Importantly, the choice of an ill-fitted function or parameters will induce costly mistakes and errors in the experimental process. In this talk we discuss the existing methods and introduce a new adaptive procedure to solve this problem, named, ZOOM (Zooming Optimistic Optimization of Models), based on recent advances in optimization and statistical learning. Compared to existing approaches, ZOOM is completely parameter free and model-free, i.e. can be applied on any arbitrary psychometric problem. Moreover, ZOOM parameters are self-tuned, thus do not need to be manually chosen using heuristics (eg. step size in the Staircase method), preventing further errors. Finally, ZOOM is based on state-of-the-art optimization theory, providing strong mathematical guarantees that are missing from many of its alternatives, while being the most accurate and robust in real life conditions. In our experiments and simulations, ZOOM was found to be significantly better than its alternative, in particular for difficult psychometric functions or when the parameters when not properly chosen. ZOOM is open source, and its implementation is freely available on the web. Given these advantages and its ease of use, we argue that ZOOM can improve the process of many psychophysics experiments.

SeminarNeuroscience

When to stop immune checkpoint inhibitor for malignant melanoma? Challenges in emulating target trials

Raphaël Porcher
Université Paris Cité and Université Sorbonne Paris Nord
Jan 29, 2023

Observational data have become a popular source of evidence for causal effects when no randomized controlled trial exists, or to supplement information provided by those. In practice, a wide range of designs and analytical choices exist, and one recent approach relies on the target trial emulation framework. This framework is particularly well suited to mimic what could be obtained in a specific randomized controlled trial, while avoiding time-related selection biases. In this abstract, we present how this framework could be useful to emulate trials in malignant melanoma, and the challenges faced when planning such a study using longitudinal observational data from a cohort study. More specifically, two questions are envisaged: duration of immune checkpoint inhibitors, and trials comparing treatment strategies for BRAF V600-mutant patients (targeted therapy as 1st line, followed by immunotherapy as 2nd line, vs. immunotherapy as 2nd line followed by targeted therapy as 1st line). Using data from 1027 participants to the MELBASE cohort, we detail the results for the emulation of a trial where immune checkpoint inhibitor would be stopped at 6 months vs. continued, in patients in response or with stable disease.

SeminarNeuroscienceRecording

No Free Lunch from Deep Learning in Neuroscience: A Case Study through Models of the Entorhinal-Hippocampal Circuit

Rylan Schaeffer
Fiete lab, MIT
Nov 1, 2022

Research in Neuroscience, as in many scientific disciplines, is undergoing a renaissance based on deep learning. Unique to Neuroscience, deep learning models can be used not only as a tool but interpreted as models of the brain. The central claims of recent deep learning-based models of brain circuits are that they shed light on fundamental functions being optimized or make novel predictions about neural phenomena. We show, through the case-study of grid cells in the entorhinal-hippocampal circuit, that one may get neither. We rigorously examine the claims of deep learning models of grid cells using large-scale hyperparameter sweeps and theory-driven experimentation, and demonstrate that the results of such models are more strongly driven by particular, non-fundamental, and post-hoc implementation choices than fundamental truths about neural circuits or the loss function(s) they might optimize. We discuss why these models cannot be expected to produce accurate models of the brain without the addition of substantial amounts of inductive bias, an informal No Free Lunch result for Neuroscience.

SeminarNeuroscienceRecording

Learning predictive maps in the brain for spatial navigation

William de Cothi
Barry lab, UCL
Oct 11, 2022

The predictive map hypothesis provides a promising framework to model representations in the hippocampal formation. I will introduce a tractable implementation of a predictive map called the successor representation (SR), before presenting data showing that rats and humans display SR-like navigational choices on a novel open-field maze. Next, I will show how such a predictive map could be implemented using spatial representations found in the hippocampal formation, before finally presenting how such learning might be well approximated by phenomena that exist in the spatial memory system - namely spike-timing dependent plasticity and theta phase precession.

SeminarNeuroscience

Decision Making and the Brain

Arjun Ramakrishnan
IIT, Kanpur
Sep 5, 2022

In this talk, we will examine human behavior from the perspective of the choices we make every day. We will study the role of the brain in enabling these decisions and discuss some simple computational models of decision making and the neural basis. Towards the end, we will have a short, interactive session to engage in some easy decisions that will help us discover our own biases.

SeminarNeuroscienceRecording

Sex Differences in Learning from Exploration

Cathy Chen
Grissom lab, University of Minnesota
Jun 7, 2022

Sex-based modulation of cognitive processes could set the stage for individual differences in vulnerability to neuropsychiatric disorders. While value-based decision making processes in particular have been proposed to be influenced by sex differences, the overall correct performance in decision making tasks often show variable or minimal differences across sexes. Computational tools allow us to uncover latent variables that define different decision making approaches, even in animals with similar correct performance. Here, we quantify sex differences in mice in the latent variables underlying behavior in a classic value-based decision making task: a restless two-armed bandit. While male and female mice had similar accuracy, they achieved this performance via different patterns of exploration. Male mice tended to make more exploratory choices overall, largely because they appeared to get ‘stuck’ in exploration once they had started. Female mice tended to explore less but learned more quickly during exploration. Together, these results suggest that sex exerts stronger influences on decision making during periods of learning and exploration than during stable choices. Exploration during decision making is altered in people diagnosed with addictions, depression, and neurodevelopmental disabilities, pinpointing the neural mechanisms of exploration as a highly translational avenue for conferring sex-modulated vulnerability to neuropsychiatric diagnoses.

SeminarNeuroscienceRecording

What the fly’s eye tells the fly’s brain…and beyond

Gwyneth Card
Janelia Research Campus, HHMI
May 31, 2022

Fly Escape Behaviors: Flexible and Modular We have identified a set of escape maneuvers performed by a fly when confronted by a looming object. These escape responses can be divided into distinct behavioral modules. Some of the modules are very stereotyped, as when the fly rapidly extends its middle legs to jump off the ground. Other modules are more complex and require the fly to combine information about both the location of the threat and its own body posture. In response to an approaching object, a fly chooses some varying subset of these behaviors to perform. We would like to understand the neural process by which a fly chooses when to perform a given escape behavior. Beyond an appealing set of behaviors, this system has two other distinct advantages for probing neural circuitry. First, the fly will perform escape behaviors even when tethered such that its head is fixed and neural activity can be imaged or monitored using electrophysiology. Second, using Drosophila as an experimental animal makes available a rich suite of genetic tools to activate, silence, or image small numbers of cells potentially involved in the behaviors. Neural Circuits for Escape Until recently, visually induced escape responses have been considered a hardwired reflex in Drosophila. White-eyed flies with deficient visual pigment will perform a stereotyped middle-leg jump in response to a light-off stimulus, and this reflexive response is known to be coordinated by the well-studied giant fiber (GF) pathway. The GFs are a pair of electrically connected, large-diameter interneurons that traverse the cervical connective. A single GF spike results in a stereotyped pattern of muscle potentials on both sides of the body that extends the fly's middle pair of legs and starts the flight motor. Recently, we have found that a fly escaping a looming object displays many more behaviors than just leg extension. Most of these behaviors could not possibly be coordinated by the known anatomy of the GF pathway. Response to a looming threat thus appears to involve activation of numerous different neural pathways, which the fly may decide if and when to employ. Our goal is to identify the descending pathways involved in coordinating these escape behaviors as well as the central brain circuits, if any, that govern their activation. Automated Single-Fly Screening We have developed a new kind of high-throughput genetic screen to automatically capture fly escape sequences and quantify individual behaviors. We use this system to perform a high-throughput genetic silencing screen to identify cell types of interest. Automation permits analysis at the level of individual fly movements, while retaining the capacity to screen through thousands of GAL4 promoter lines. Single-fly behavioral analysis is essential to detect more subtle changes in behavior during the silencing screen, and thus to identify more specific components of the contributing circuits than previously possible when screening populations of flies. Our goal is to identify candidate neurons involved in coordination and choice of escape behaviors. Measuring Neural Activity During Behavior We use whole-cell patch-clamp electrophysiology to determine the functional roles of any identified candidate neurons. Flies perform escape behaviors even when their head and thorax are immobilized for physiological recording. This allows us to link a neuron's responses directly to an action.

SeminarNeuroscience

Inter-individual variability in reward seeking and decision making: role of social life and consequence for vulnerability to nicotine

Philippe Faure
Neurophysiology and Behavior , Sorbonne University, Paris
Apr 6, 2022

Inter-individual variability refers to differences in the expression of behaviors between members of a population. For instance, some individuals take greater risks, are more attracted to immediate gains or are more susceptible to drugs of abuse than others. To probe the neural bases of inter-individual variability  we study reward seeking and decision-making in mice, and dissect the specific role of dopamine in the modulation of these behaviors. Using a spatial version of the multi-armed bandit task, in which mice are faced with consecutive binary choices, we could link modifications of midbrain dopamine cell dynamics with modulation of exploratory behaviors, a major component of individual characteristics in mice. By analyzing mouse behaviors in semi-naturalistic environments, we then explored the role of social relationships in the shaping of dopamine activity and associated beahviors. I will present recent data from the laboratory suggesting that changes in the activity of dopaminergic networks link social influences with variations in the expression of non-social behaviors: by acting on the dopamine system, the social context may indeed affect the capacity of individuals to make decisions, as well as their vulnerability to drugs of abuse, in particular nicotine.

SeminarNeuroscienceRecording

The ubiquity of opportunity cost: Foraging and beyond

Nathaniel Daw
Princeton University
Mar 29, 2022

A key insight from the foraging literature is the importance of assessing the overall environmental quality — via global reward rate or similar measures, which capture the opportunity cost of time and can guide behavioral allocation toward relatively richer options. Meanwhile, the majority of research in decision neuroscience and computational psychiatry has focused instead on how choices are guided by much more local, event-locked evaluations: of individual situations, actions, or outcomes. I review a combination of research and theoretical speculation from my lab and others that emphasizes the role of foraging's average rewards and opportunity costs in a much larger range of decision problems, including risk, time discounting, vigor, cognitive control, and deliberation. The broad range of behaviors affected by this type of evaluation gives a new theoretical perspective on the effects of stress and autonomic mobilization, and on mood and the broad range of symptoms associated with mood disorders.

SeminarPsychology

Leadership Support and Workplace Psychosocial Stressors

Leslie B. Hammer
Portland State University
Feb 22, 2022

Research evidence indicates that psychosocial stressors such as work-life stress serves as a negative occupational exposure relating to poor health behaviors including smoking, poor food choices, low levels of exercise, and even decreased sleep time, as well as a number of chronic health outcomes. The association between work-life stress and adverse health behaviors and chronic health suggests that Occupational Health Psychology (OHP) interventions such as leadership support trainings may be helpful in mitigating effects of work-life stress and improving health, consistent with the Total Worker Health approach. This presentation will review workplace psychosocial stressors and leadership training approaches to reduces stress and improve health, highlighting a randomized controlled trial, the Military Employee Sleep and Health study.

SeminarNeuroscience

How does a neuron decide when and where to make a synapse?

Peter R. Hiesinger
Free University, Berlin, Germany
Feb 15, 2022

Precise synaptic connectivity is a prerequisite for the function of neural circuits, yet individual neurons, taken out of their developmental context, readily form unspecific synapses. How does genetically encoded brain wiring deal with this apparent contradiction? Brain wiring is a developmental growth process that is not only characterized by precision, but also flexibility and robustness. As in any other growth process, cellular interactions are restricted in space and time. Correspondingly, molecular and cellular interactions are restricted to those that 'get to see' each other during development. This seminar will explore the question how neurons decide when and where to make synapses using the Drosophila visual system as a model. New findings reveal that pattern formation during growth and the kinetics of live neuronal interactions restrict synapse formation and partner choice for neurons that are not otherwise prevented from making incorrect synapses in this system. For example, cell biological mechanisms like autophagy as well as developmental temperature restrict inappropriate partner choice through a process of kinetic exclusion that critically contributes to wiring specificity. The seminar will explore these and other neuronal strategies when and where to make synapses during developmental growth that contribute to precise, flexible and robust outcomes in brain wiring.

SeminarNeuroscience

Neural circuits for novel choices and for choice speed and accuracy changes in macaques

Alessandro Bongioanni
University of Oxford
Feb 3, 2022

While most experimental tasks aim at isolating simple cognitive processes to study their neural bases, naturalistic behaviour is often complex and multidimensional. I will present two studies revealing previously uncharacterised neural circuits for decision-making in macaques. This was possible thanks to innovative experimental tasks eliciting sophisticated behaviour, bridging the human and non-human primate research traditions. Firstly, I will describe a specialised medial frontal circuit for novel choice in macaques. Traditionally, monkeys receive extensive training before neural data can be acquired, while a hallmark of human cognition is the ability to act in novel situations. I will show how this medial frontal circuit can combine the values of multiple attributes for each available novel item on-the-fly to enable efficient novel choices. This integration process is associated with a hexagonal symmetry pattern in the BOLD response, consistent with a grid-like representation of the space of all available options. We prove the causal role played by this circuit by showing that focussed transcranial ultrasound neuromodulation impairs optimal choice based on attribute integration and forces the subjects to default to a simpler heuristic decision strategy. Secondly, I will present an ongoing project addressing the neural mechanisms driving behaviour shifts during an evidence accumulation task that requires subjects to trade speed for accuracy. While perceptual decision-making in general has been thoroughly studied, both cognitively and neurally, the reasons why speed and/or accuracy are adjusted, and the associated neural mechanisms, have received little attention. We describe two orthogonal dimensions in which behaviour can vary (traditional speed-accuracy trade-off and efficiency) and we uncover independent neural circuits concerned with changes in strategy and fluctuations in the engagement level. The former involves the frontopolar cortex, while the latter is associated with the insula and a network of subcortical structures including the habenula.

SeminarCognitionRecording

Choice History Bias As A Window Into Cognition And Neural Circuits

Anne Urai
Leiden University
Jan 19, 2022
SeminarNeuroscience

Sex, drugs, and bad choices: using rodent models to understand decision making

Barry Setlow
University of Florida
Jan 10, 2022

Nearly every aspect of life involves decisions between options that differ in both their expected rewards and the potential costs (such as delay to reward delivery or risk of harm) that accompany those rewards. The ability to choose adaptively when faced with such decisions is critical for well-being and overall quality of life. In neuropsychiatric conditions such as substance use disorders, however, decision making is often compromised, which can prolong and exacerbate their severity and co-morbidities. In this seminar, Dr. Setlow will discuss research in rodent models investigating behavioral and biological mechanisms of cost-benefit decision making. In particular, he will focus on factors (including sex) that contribute to differences in cost-benefit decision making across the population, how variability in decision making is related to substance use, and how substance use can produce long-lasting changes in decision preference.

SeminarNeuroscience

The processing of price during purchase decision making: Are there neural differences among prosocial and non-prosocial consumers?

Anna Shepelenko
HSE University
Dec 8, 2021

International organizations, governments and companies are increasingly committed to developing measures that encourage adoption of sustainable consumption patterns among the population. However, their success requires a deep understanding of the everyday purchasing decision process and the elements that shape it. Price is an element that stands out. Prior research concluded that the influence of price on purchase decisions varies across consumer profiles. Yet no consumer behavior study to date has assessed the differences of price processing among consumers adopting sustainable habits (prosocial) as opposed to those who have not (non-prosocial). This is the first study to resort to neuroimaging tools to explore the underlying neural mechanisms that reveal the effect of price on prosocial and non-prosocial consumers. Self-reported findings indicate that prosocial consumers place greater value on collective costs and benefits while non-prosocial consumers place a greater weight on price. The neural data gleaned from this analysis offers certain explanations as to the origin of the differences. Non-prosocial (vs. prosocial) consumers, in fact, exhibit a greater activation in brain areas involved with reward, valuation and choice when evaluating price information. These findings could steer managers to improve market segmentation and assist institutions in their design of campaigns fostering environmentally sustainable behaviors

SeminarNeuroscienceRecording

NMC4 Short Talk: Multiscale and extended retrieval of associative memory structures in a cortical model of local-global inhibition balance

Tom Burns (he/him)
Okinawa Institute of Science and Technology
Dec 2, 2021

Inhibitory neurons take on many forms and functions. How this diversity contributes to memory function is not completely known. Previous formal studies indicate inhibition differentiated by local and global connectivity in associative memory networks functions to rescale the level of retrieval of excitatory assemblies. However, such studies lack biological details such as a distinction between types of neurons (excitatory and inhibitory), unrealistic connection schemas, and non-sparse assemblies. In this study, we present a rate-based cortical model where neurons are distinguished (as excitatory, local inhibitory, or global inhibitory), connected more realistically, and where memory items correspond to sparse excitatory assemblies. We use this model to study how local-global inhibition balance can alter memory retrieval in associative memory structures, including naturalistic and artificial structures. Experimental studies have reported inhibitory neurons and their sub-types uniquely respond to specific stimuli and can form sophisticated, joint excitatory-inhibitory assemblies. Our model suggests such joint assemblies, as well as a distribution and rebalancing of overall inhibition between two inhibitory sub-populations – one connected to excitatory assemblies locally and the other connected globally – can quadruple the range of retrieval across related memories. We identify a possible functional role for local-global inhibitory balance to, in the context of choice or preference of relationships, permit and maintain a broader range of memory items when local inhibition is dominant and conversely consolidate and strengthen a smaller range of memory items when global inhibition is dominant. This model therefore highlights a biologically-plausible and behaviourally-useful function of inhibitory diversity in memory.

SeminarNeuroscienceRecording

Timing errors and decision making

Fuat Balci
University of Manitoba
Nov 29, 2021

Error monitoring refers to the ability to monitor one's own task performance without explicit feedback. This ability is studied typically in two-alternative forced-choice (2AFC) paradigms. Recent research showed that humans can also keep track of the magnitude and direction of errors in different magnitude domains (e.g., numerosity, duration, length). Based on the evidence that suggests a shared mechanism for magnitude representations, we aimed to investigate whether metric error monitoring ability is commonly governed across different magnitude domains. Participants reproduced/estimated temporal, numerical, and spatial magnitudes after which they rated their confidence regarding first order task performance and judged the direction of their reproduction/estimation errors. Participants were also tested in a 2AFC perceptual decision task and provided confidence ratings regarding their decisions. Results showed that variability in reproductions/estimations and metric error monitoring ability, as measured by combining confidence and error direction judgements, were positively related across temporal, spatial, and numerical domains. Metacognitive sensitivity in these metric domains was also positively associated with each other but not with metacognitive sensitivity in the 2AFC perceptual decision task. In conclusion, the current findings point at a general metric error monitoring ability that is shared across different metric domains with limited generalizability to perceptual decision-making.

SeminarNeuroscienceRecording

Change of mind in rapid free-choice picking scenarios

Ariel Furstenberg
The Hebrew University
Nov 23, 2021

In a famous philosophical paradox, Buridan's ass perishes because he is equally hungry and thirsty, and cannot make up his mind whether to first drink or eat. We are faced daily with the need to pick between alternatives that are equally attractive (or not) to us. What are the processes that allow us to avoid paralysis and to rapidly select between such equal options when there are no preferences or rational reasons to rely on? One solution that was offered is that although on a higher cognitive level there is symmetry between the alternatives, on a neuronal level the symmetry does not maintain. What is the nature of this asymmetry of the neuronal level? In this talk I will present experiments addressing this important phenomenon using measures of human behavior, EEG, EMG and large scale neural network modeling, and discuss mechanisms involved in the process of intention formation and execution, in the face of alternatives to choose from. Specifically, I will show results revealing the temporal dynamics of rapid intention formation and, moreover, ‘change of intention’ in a free choice picking scenario, in which the alternatives are on a par for the participant. The results suggest that even in arbitrary choices, endogenous or exogenous biases that are present in the neural system for selecting one or another option may be implicitly overruled; thus creating an implicit and non-conscious ‘change of mind’. Finally, the question is raised: in what way do such rapid implicit ‘changes of mind’ help retain one’s self-control and free-will behavior?

SeminarNeuroscience

The bounded rationality of probability distortion

Laurence T Maloney
NYU
Nov 9, 2021

In decision-making under risk (DMR) participants' choices are based on probability values systematically different from those that are objectively correct. Similar systematic distortions are found in tasks involving relative frequency judgments (JRF). These distortions limit performance in a wide variety of tasks and an evident question is, why do we systematically fail in our use of probability and relative frequency information? We propose a Bounded Log-Odds Model (BLO) of probability and relative frequency distortion based on three assumptions: (1) log-odds: probability and relative frequency are mapped to an internal log-odds scale, (2) boundedness: the range of representations of probability and relative frequency are bounded and the bounds change dynamically with task, and (3) variance compensation: the mapping compensates in part for uncertainty in probability and relative frequency values. We compared human performance in both DMR and JRF tasks to the predictions of the BLO model as well as eleven alternative models each missing one or more of the underlying BLO assumptions (factorial model comparison). The BLO model and its assumptions proved to be superior to any of the alternatives. In a separate analysis, we found that BLO accounts for individual participants’ data better than any previous model in the DMR literature. We also found that, subject to the boundedness limitation, participants’ choice of distortion approximately maximized the mutual information between objective task-relevant values and internal values, a form of bounded rationality.

SeminarNeuroscienceRecording

Visual Decisions in Natural Action

Mary Hayhoe
University of Texas, Austin
Nov 8, 2021

Natural behavior reveals the way that gaze serves the needs of the current task, and the complex cognitive control mechanisms that are involved. It has become increasingly clear that even the simplest actions involve complex decision processes that depend on an interaction of visual information, knowledge of the current environment, and the intrinsic costs and benefits of actions choices. I will explore these ideas in the context of walking in natural terrain, where we are able to recover the 3D structure of the visual environment. We show that subjects choose flexible paths that depend on the flatness of the terrain over the next few steps. Subjects trade off flatness with straightness of their paths towards the goal, indicating a nuanced trade-off between stability and energetic costs on both the time scale of the next step and longer-range constraints.

SeminarNeuroscienceRecording

The role of high- and low-level factors in smooth pursuit of predictable and random motions

Eileen Kowler
Rutgers
Oct 18, 2021

Smooth pursuit eye movements are among our most intriguing motor behaviors. They are able to keep the line of sight on smoothly moving targets with little or no overt effort or deliberate planning, and they can respond quickly and accurately to changes in the trajectory of motion of targets. Nevertheless, despite these seeming automatic characteristics, pursuit is highly sensitive to high-level factors, such as the choices made about attention, or beliefs about the direction of upcoming motion. Investigators have struggled for decades with the problem of incorporating both high- and low-level processes into a single coherent model. This talk will present an overview of the current state of efforts to incorporate high- and low-level influences, as well as new observations that add to our understanding of both types of influences. These observations (in contrast to much of the literature) focus on the directional properties of pursuit. Studies will be presented that show: (1) the direction of smooth pursuit made to pursue fields of noisy random dots depends on the relative reliability of the sensory signal and the expected motion direction; (2) smooth pursuit shows predictive responses that depend on the interpretation of cues that signal an impending collision; and (3) smooth pursuit during a change in target direction displays kinematic properties consistent with the well-known two-thirds power law. Implications for incorporating high- and low-level factors into the same framework will be discussed.

SeminarNeuroscience

The processing of price during purchase decision making: Are there neural differences among prosocial and non-prosocial consumers?

Anna Shepelenko
HSE University
Oct 13, 2021

International organizations, governments and companies are increasingly committed to developing measures that encourage adoption of sustainable consumption patterns among the population. However, their success requires a deep understanding of the everyday purchasing decision process and the elements that shape it. Price is an element that stands out. Prior research concluded that the influence of price on purchase decisions varies across consumer profiles. Yet no consumer behavior study to date has assessed the differences of price processing among consumers adopting sustainable habits (prosocial) as opposed to those who have not (non-prosocial). This is the first study to resort to neuroimaging tools to explore the underlying neural mechanisms that reveal the effect of price on prosocial and non-prosocial consumers. Self-reported findings indicate that prosocial consumers place greater value on collective costs and benefits while non-prosocial consumers place a greater weight on price. The neural data gleaned from this analysis offers certain explanations as to the origin of the differences. Non-prosocial (vs. prosocial) consumers, in fact, exhibit a greater activation in brain areas involved with reward, valuation and choice when evaluating price information. These findings could steer managers to improve market segmentation and assist institutions in their design of campaigns fostering environmentally sustainable behaviors

SeminarNeuroscienceRecording

The Geometry of Decision-Making

Iain Couzin
Max Planck Institute of Animal Behavior & University of Konstanz
Oct 7, 2021

Choosing among spatially distributed options is a central challenge for animals, from deciding among alternative potential food sources or refuges, to choosing with whom to associate. Here, using an integrated theoretical and experimental approach (employing immersive Virtual Reality), with both invertebrate and vertebrate models—the fruit fly, desert locust and zebrafish—we consider the recursive interplay between movement and collective vectorial integration in the brain during decision-making regarding options (potential ‘targets’) in space. We reveal that the brain repeatedly breaks multi-choice decisions into a series of abrupt (critical) binary decisions in space-time where organisms switch, spontaneously, from averaging vectorial information among, to suddenly excluding one of, the remaining options. This bifurcation process repeats until only one option—the one ultimately selected—remains. Close to each bifurcation the ‘susceptibility’ of the system exhibits a sharp increase, inevitably causing small differences among the remaining options to become amplified; a property that both comes ‘for free’ and is highly desirable for decision-making. This mechanism facilitates highly effective decision-making, and is shown to be robust both to the number of options available, and to context, such as whether options are static (e.g. refuges) or mobile (e.g. other animals). In addition, we find evidence that the same geometric principles of decision-making occur across scales of biological organisation, from neural dynamics to animal collectives, suggesting they are fundamental features of spatiotemporal computation.

SeminarNeuroscienceRecording

The role of the primate prefrontal cortex in inferring the state of the world and predicting change

Ramon Bartolo
Averbeck lab, Nation Institute of Mental Health
Sep 7, 2021

In an ever-changing environment, uncertainty is omnipresent. To deal with this, organisms have evolved mechanisms that allow them to take advantage of environmental regularities in order to make decisions robustly and adjust their behavior efficiently, thus maximizing their chances of survival. In this talk, I will present behavioral evidence that animals perform model-based state inference to predict environmental state changes and adjust their behavior rapidly, rather than slowly updating choice values. This model-based inference process can be described using Bayesian change-point models. Furthermore, I will show that neural populations in the prefrontal cortex accurately predict behavioral switches, and that the activity of these populations is associated with Bayesian estimates. In addition, we will see that learning leads to the emergence of a high-dimensional representational subspace that can be reused when the animals re-learn a previously learned set of action-value associations. Altogether, these findings highlight the role of the PFC in representing a belief about the current state of the world.

SeminarNeuroscience

LONG-ACTING ANTIPSYCHOTICS: OPTION DOWN THE ROCKY ROAD, NICE TO HAVE OR ESSENTIAL CHOICE?

Christoph U. Correll
The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell New York, USA & Charité – Universitätsmedizin Berlin, Berlin, Germany
Aug 30, 2021

Time and again we are faced with the question at what point in the treatment of schizophrenia a depot formulation should be used. The data on the so-called LAIs (Long-Acting Injectables) has steadily increased in recent years. Today, we have very good evidence for the early use of depot therapies. However, the willingness and consent of the patient for this form of pharmacotherapy remains central to the successful use of LAIs. In his lecture, Prof. Correll will talk about the current evidence for the use of LAIs summarizing the latest studies.

SeminarNeuroscienceRecording

Using opsin genes to see through the eyes of a fish

Karen Carleton
University of Maryland
Jul 25, 2021

Many animals are highly visual. They view their world through photoreceptors sensitive to different wavelengths of light. Animal survival and optimal behavioral performance may select for varying photoreceptor sensitivities depending on animal habitat or visual tasks. Our goal is to understand what drives visual diversity from both an evolutionary and molecular perspective. The group of more than 2000 cichlid fish species are an ideal system for examining such diversity. Cichlid are a colorful group of fresh water fishes. They have undergone adaptive radiation throughout Africa and the new world and occur in rivers and lakes that vary in water clarity. They are also behaviorally complex, having diverse behaviors for foraging, mate choice and even parental care. As a result, cichlids have highly diverse visual systems with cone sensitivities shifting by 30-90 nm between species. Although this group has seven cone opsin genes, individual species differ in which subset of the cone opsins they express. Some species show developmental shifts in opsin expression, switching from shorter to longer wavelength opsins through ontogeny. Other species modify that developmental program to express just one of the sets, causing the large sensitivity differences. Cichlids are therefore natural mutants for opsin expression. We have used cichlid diversity to explore the relationship between visual sensitivities and ecology. We have also exploited the genomic power of the cichlid system to identify genes and mutations that cause opsin expression shifts. Ultimately, our goal is to learn how different cichlid species see the world and whether differences matter. Behavioral experiments suggest they do indeed use color vision to survive and thrive. Cichlids therefore are a unique model for exploring how visual systems evolve in a changing world.

SeminarNeuroscience

A brain circuit for curiosity

Mehran Ahmadlou
Netherlands Institute for Neuroscience
Jul 11, 2021

Motivational drives are internal states that can be different even in similar interactions with external stimuli. Curiosity as the motivational drive for novelty-seeking and investigating the surrounding environment is for survival as essential and intrinsic as hunger. Curiosity, hunger, and appetitive aggression drive three different goal-directed behaviors—novelty seeking, food eating, and hunting— but these behaviors are composed of similar actions in animals. This similarity of actions has made it challenging to study novelty seeking and distinguish it from eating and hunting in nonarticulating animals. The brain mechanisms underlying this basic survival drive, curiosity, and novelty-seeking behavior have remained unclear. In spite of having well-developed techniques to study mouse brain circuits, there are many controversial and different results in the field of motivational behavior. This has left the functions of motivational brain regions such as the zona incerta (ZI) still uncertain. Not having a transparent, nonreinforced, and easily replicable paradigm is one of the main causes of this uncertainty. Therefore, we chose a simple solution to conduct our research: giving the mouse freedom to choose what it wants—double freeaccess choice. By examining mice in an experimental battery of object free-access double-choice (FADC) and social interaction tests—using optogenetics, chemogenetics, calcium fiber photometry, multichannel recording electrophysiology, and multicolor mRNA in situ hybridization—we uncovered a cell type–specific cortico-subcortical brain circuit of the curiosity and novelty-seeking behavior. We found in mice that inhibitory neurons in the medial ZI (ZIm) are essential for the decision to investigate an object or a conspecific. These neurons receive excitatory input from the prelimbic cortex to signal the initiation of exploration. This signal is modulated in the ZIm by the level of investigatory motivation. Increased activity in the ZIm instigates deep investigative action by inhibiting the periaqueductal gray region. A subpopulation of inhibitory ZIm neurons expressing tachykinin 1 (TAC1) modulates the investigatory behavior.

SeminarNeuroscienceRecording

Zero-shot visual reasoning with probabilistic analogical mapping

Taylor Webb
UCLA
Jun 30, 2021

There has been a recent surge of interest in the question of whether and how deep learning algorithms might be capable of abstract reasoning, much of which has centered around datasets based on Raven’s Progressive Matrices (RPM), a visual analogy problem set commonly employed to assess fluid intelligence. This has led to the development of algorithms that are capable of solving RPM-like problems directly from pixel-level inputs. However, these algorithms require extensive direct training on analogy problems, and typically generalize poorly to novel problem types. This is in stark contrast to human reasoners, who are capable of solving RPM and other analogy problems zero-shot — that is, with no direct training on those problems. Indeed, it’s this capacity for zero-shot reasoning about novel problem types, i.e. fluid intelligence, that RPM was originally designed to measure. I will present some results from our recent efforts to model this capacity for zero-shot reasoning, based on an extension of a recently proposed approach to analogical mapping we refer to as Probabilistic Analogical Mapping (PAM). Our RPM model uses deep learning to extract attributed graph representations from pixel-level inputs, and then performs alignment of objects between source and target analogs using gradient descent to optimize a graph-matching objective. This extended version of PAM features a number of new capabilities that underscore the flexibility of the overall approach, including 1) the capacity to discover solutions that emphasize either object similarity or relation similarity, based on the demands of a given problem, 2) the ability to extract a schema representing the overall abstract pattern that characterizes a problem, and 3) the ability to directly infer the answer to a problem, rather than relying on a set of possible answer choices. This work suggests that PAM is a promising framework for modeling human zero-shot reasoning.

SeminarPsychologyRecording

What the fluctuating impact of memory load on decision speed tells us about thinking

Candice C. Morey
Cardiff University
Jun 30, 2021

Previous work with complex memory span tasks, in which simple choice decisions are imposed between presentations of to-be-remembered items, shows that these secondary tasks reduce memory span. It is less clear how reconfiguring and maintaining various amounts of information affects decision speeds. We documented and replicated a non-linear effect of accumulating memory items on concurrent processing judgments, showing that this pattern could be made linear by introducing "lead-in" processing judgments prior to the start of the memory list. With lead-in judgments, there was a large and consistent cost to processing response times with the introduction of the first item in the memory list, which increased gradually per item as the list accumulated. However, once presentation of the list was complete, decision responses sped rapidly: within a few seconds, decisions were at least as fast as when remembering a single item. This pattern of findings is inconsistent with the idea that merely holding information in mind conflicts with attention-demanding decision tasks. Instead, it is possible that reconfiguring memory items for responding provokes conflict between memory and processing in complex span tasks.

SeminarPsychology

Perception, attention, visual working memory, and decision making: The complete consort dancing together

Philip Smith
The University of Melbourne
Jun 16, 2021

Our research investigates how processes of attention, visual working memory (VWM), and decision-making combine to translate perception into action. Within this framework, the role of VWM is to form stable representations of transient stimulus events that allow them to be identified by a decision process, which we model as a diffusion process. In psychophysical tasks, we find the capacity of VWM is well defined by a sample-size model, which attributes changes in VWM precision with set-size to differences in the number evidence samples recruited to represent stimuli. In the first part of the talk, I review evidence for the sample-size model and highlight the model's strengths: It provides a parameter-free characterization of the set-size effect; it has plausible neural and cognitive interpretations; an attention-weighted version of the model accounts for the power-law of VWM, and it accounts for the selective updating of VWM in multiple-look experiments. In the second part of the talk, I provide a characterization of the theoretical relationship between two-choice and continuous-outcome decision tasks using the circular diffusion model, highlighting their common features. I describe recent work characterizing the joint distributions of decision outcomes and response times in continuous-outcome tasks using the circular diffusion model and show that the model can clearly distinguish variable-precision and simple mixture models of the evidence entering the decision process. The ability to distinguish these kinds of processes is central to current VWM studies.

SeminarNeuroscienceRecording

Deciding to stop deciding: A cortical-subcortical circuit for forming and terminating a decision

Michael Shadlen
Columbia University
Jun 9, 2021

The neurobiology of decision-making is informed by neurons capable of representing information over time scales of seconds. Such neurons were initially characterized in studies of spatial working memory, motor planning (e.g., Richard Andersen lab) and spatial attention. For decision-making, such neurons emit graded spike rates, that represent the accumulated evidence for or against a choice. They establish the conduit between the formation of the decision and its completion, usually in the form of a commitment to an action, even if provisional. Indeed, many decisions appear to arise through an accumulation of noisy samples of evidence to a terminating threshold, or bound. Previous studies show that single neurons in the lateral intraparietal area (LIP) represent the accumulation of evidence when monkeys make decisions about the direction of random dot motion (RDM) and express their decision with a saccade to the neuron’s preferred target. The mechanism of termination (the bound) is elusive. LIP is interconnected with other brain regions that also display decision-related activity. Whether these areas play roles in the decision process that are similar to or fundamentally different from that of LIP is unclear. I will present new unpublished experiments that begin to resolve these issues by recording from populations of neurons simultaneously in LIP and one of its primary targets, the superior colliculus (SC), while monkeys make difficult perceptual decisions.

SeminarNeuroscience

Faces influence saccade programming

Nathalie Guyader
Grenoble Institute of Technology
Jun 8, 2021

Several studies have showed that face stimuli elicit extremely fast and involuntary saccadic responses toward them, relative to other categories of visual stimuli. In the talk, I will mainly focus on a quite recent research done in our team that investigated to what extent face stimuli influence the programming and execution of saccades. In this research, two experiments were performed using a saccadic choice task: two images (one with a face, one with a vehicle) were simultaneously displayed in the left and right visual fields of participants who had to execute a saccade toward the image (Experiment 1) or toward a cross added in the center of the image (Experiment 2) containing a target stimulus (a face or a vehicle). As expected participants were faster to execute a saccade toward a face than toward a vehicle and did less errors. We also observed shorter saccades toward vehicle than face targets, even if participants were explicitly asked to perform their saccades toward a specific location (Experiment 2). Further analyses, that I will detailed in the talk, showed that error saccades might be interrupted in mid-fight to initiate a concurrently programmed corrective saccade.

SeminarPsychology

The Jena Voice Learning and Memory Test (JVLMT)

Romi Zäske
University of Jena
May 26, 2021

The ability to recognize someone’s voice spans a broad spectrum with phonagnosia on the low end and super recognition at the high end. Yet there is no standardized test to measure the individual ability to learn and recognize newly-learnt voices with samples of speech-like phonetic variability. We have developed the Jena Voice Learning and Memory Test (JVLMT), a 20 min-test based on item response theory and applicable across different languages. The JVLMT consists of three phases in which participants are familiarized with eight speakers in two stages and then perform a three-alternative forced choice recognition task, using pseudo sentences devoid of semantic content. Acoustic (dis)similarity analyses were used to create items with different levels of difficulty. Test scores are based on 22 Rasch-conform items. Items were selected and validated in online studies based on 232 and 454 participants, respectively. Mean accuracy is 0.51 with an SD of .18. The JVLMT showed high and moderate correlations with convergent validation tests (Bangor Voice Matching Test; Glasgow Voice Memory Test) and a weak correlation with a discriminant validation test (Digit Span). Empirical (marginal) reliability is 0.66. Four participants with super recognition (at least 2 SDs above the mean) and 7 participants with phonagnosia (at least 2 SDs below the mean) were identified. The JVLMT is a promising screen too for voice recognition abilities in a scientific and neuropsychological context.

SeminarNeuroscienceRecording

Optogenetic silencing of synaptic transmission with a mosquito rhodopsin

Ofer Yizhar
Weizmann Institute
May 26, 2021

Long-range projections link distant circuits in the brain, allowing efficient transfer of information between regions and synchronization of distributed patterns of neural activity. Understanding the functional roles of defined neuronal projection pathways requires temporally precise manipulation of their activity, and optogenetic tools appear to be an obvious choice for such experiments. However, we and others have previously shown that commonly-used inhibitory optogenetic tools have low efficacy and off-target effects when applied to presynaptic terminals. In my talk, I will present a new solution to this problem: a targeting-enhanced mosquito homologue of the vertebrate encephalopsin (eOPN3), which upon activation can effectively suppress synaptic transmission through the Gi/o signaling pathway. Brief illumination of presynaptic terminals expressing eOPN3 triggers a lasting suppression of synaptic output that recovers spontaneously within minutes in vitro and in vivo. The efficacy of eOPN3 in suppressing presynaptic release opens new avenues for functional interrogation of long-range neuronal circuits in vivo.

ePoster

Task choice influences single-neuron tuning predictions in connectome-constrained modeling

Felix Pei, Janne Lappalainen, Srinivas Turaga, Jakob Macke

Bernstein Conference 2024

ePoster

How does the dorsal striatum contribute to active choice rejection?

COSYNE 2022

ePoster

Initialization choice leads to different solutions in trained RNNs

COSYNE 2022

ePoster

Initialization choice leads to different solutions in trained RNNs

COSYNE 2022

ePoster

Irrational choice via curvilinear value geometry in ventromedial prefrontal cortex

COSYNE 2022

ePoster

Irrational choice via curvilinear value geometry in ventromedial prefrontal cortex

COSYNE 2022

ePoster

Model architectures for choice-selective sequences in a navigation-based, evidence-accumulation task

COSYNE 2022

ePoster

Model architectures for choice-selective sequences in a navigation-based, evidence-accumulation task

COSYNE 2022

ePoster

Multimodal cues displayed by submissive rats facilitate prosocial choices by dominants

COSYNE 2022

ePoster

Multimodal cues displayed by submissive rats facilitate prosocial choices by dominants

COSYNE 2022

ePoster

Social cues modulate circuit dynamics to control the choice between communication signals in flies

COSYNE 2022

ePoster

Social cues modulate circuit dynamics to control the choice between communication signals in flies

COSYNE 2022

ePoster

Task demands drive choice of navigation strategy and distinct types of spatial representations

COSYNE 2022

ePoster

Task demands drive choice of navigation strategy and distinct types of spatial representations

COSYNE 2022

ePoster

Distinct mechanisms for evidence accumulation and choice memory explain diverse neuronal dynamics

Thomas Luo, Carlos Brody, Timothy Kim, Brian DePasquale*

COSYNE 2023

ePoster

Sensory priors, and choice and outcome history in service of optimal behaviour in noisy environments

Elena Menichini, Victor Pedrosa, Quentin Pajot-Moric, Viktor Plattner, Liang Zhou, Peter Latham, Athena Akrami

COSYNE 2023

ePoster

Continuous and compositional mixing of goals in continuous choice

Justin Fine, Seng Bum Michael Yoo, Benjamin Hayden

COSYNE 2025

ePoster

Hormone-mediated multi-day reorganization of cortical dynamics during female social choice

Meenakshi Asokan, Lucy Sirrs, Stefan Oline, Annegret Falkner

COSYNE 2025

ePoster

Autistic traits mediate the relationship between occipital GABA and perceptual choice in a target detection task

Nazia Jassim, Frederike H Petzschner, Catarina Rua, Simon Baron-Cohen, John Suckling, Rebecca P Lawson

FENS Forum 2024

ePoster

Different Pavlovian conditioning styles influence suboptimal choices

Luigi Degni, Sara Garofalo, Gianluca Finotti, Claudio Danti, Valentina Bernardi, Giuseppe di Pellegrino

FENS Forum 2024

ePoster

Dissociations between choice, effort, and profitability in pigeons

Patrick Anselme, Neslihan Wittek, Selin Sayin, Nurdem Okur, Kevin Wittek, Naciye Gül, Fatma Oeksuez, Onur Güntürkün

FENS Forum 2024

ePoster

Dopamine deficient mice show anergia but not anhedonia on tests of vigor-based choice

Andrea Martinez Verdu, Adrian Sanz-Magro, Noelia Granado, Régulo Olivares-García, Paula Matas-Navarro, Nicolás Pons-Villanueva, John D. Salamone, Rosario Moratalla, Mercè Correa

FENS Forum 2024

ePoster

Dynamical adaptation of neuronal activity in the prefrontal cortex depending on different motivations behind a choice

Hugo Malagon-Vina, Dimitrios Mariatos Metaxas, Cristian Estarellas, Claudia Espinoza, Thomas Klausberger

FENS Forum 2024

ePoster

Effect of social choice-induced voluntary abstinence on incubation of methamphetamine craving and AMPA receptor expression in nucleus accumbens core

Claudia Marchetti, Soami F. Zenoni, Sara Pezza, Ginevra D'Ottavio, Berretta Nicola, Luisa Lo Iacono, Rossella Miele, Marco Venniro, Davide Ragozzino, Ingrid Reverte, Daniele Caprioli

FENS Forum 2024

ePoster

Effector-specific neural representations of perceptual choices across different sensory domains

Marlon Esmeyer, Timo Torsten Schmidt, Felix Blankenburg

FENS Forum 2024

ePoster

Enacted cognition: Pigeons’ pecking behavior is predictive of their upcoming choice

Robert Willma

FENS Forum 2024

ePoster

Fronto-striatal dynamics and optogenetic approaches to remodel impulsive choice

Nikita Gorbunov, Catharina Hamann, Philip Tovote, Tatyana Strekalova, Klaus-Peter Lesch

FENS Forum 2024

ePoster

The GlyT1 inhibitor bitopertin improves choice accuracy during a touchscreen-based working memory task in mice

Bastiaan van der Veen, Suellen Almeida-Correa, Lucas Yebra, Serena Deiana, Carsten T. Wotjak, Johann Du Hoffmann

FENS Forum 2024

ePoster

Hierarchical encoding of reward, effort and choice across the frontal cortex and basal ganglia during cost-benefit decision making

Oliver Haermson, Isaac Grennan, Brook Perry, Robert Toth, Colin G. McNamara, Timothy Denison, Hayriye Cagnan, Sanjay G. Manohar, Mark E. Walton, Andrew Sharott

FENS Forum 2024

ePoster

Making decisions: Novel method for exploring spatial choices

Julia Świderska, Lali Kruashvili, Błażej Ruszczycki, Filip Polański, Kasia Radwańska

FENS Forum 2024

ePoster

Neural correlates of social choices during decision-making in freely moving mice

Dimokratis Karamanlis, Andrea Valderrama Alvarez, Anas Masood, Sami El-Boustani

FENS Forum 2024

ePoster

Neural dynamics of choice behavior: Influence of prior choices on basal ganglia-anterolateral motor cortex (ALM) circuitry and optogenetic modulation of the indirect pathway

Anya Stetsenko, Maria Nunes, Faith Remias, Reina Macalindong, Tibor Koos

FENS Forum 2024

ePoster

Neural mechanisms of human food choice: Nutritive and sensory food properties shape economic decisions for orally sampled foods

Tavish Traut, Fabian Grabenhorst

FENS Forum 2024

ePoster

Nonlinear neural circuit model accounts for nonhuman primates’ choice behaviour and LIP neuronal activity in perceptual decisions uncoupled from motor actions

Brendan Lenfesty, Abdoreza Asadpour, Michael N. Shadlen, Saugat Bhattacharyya, Shushruth Shushruth, KongFatt Wong-Lin

FENS Forum 2024

ePoster

The role of the mPFC pyramidal neurons in mediating social choice

Renad Jabarin, Shai Netser, Shlomo Wagner

FENS Forum 2024

ePoster

skiftiTools: An R package for visualizing and manipulating skeletonized brain diffusion tensor imaging data for versatile statistics of choice

Harri Merisaari, Aylin Rosberg, Hasse Karlsson, Linnea Karlsson, Jakob Seidlitz, Richard Betlehem, Jetro Tuulari

FENS Forum 2024

ePoster

SLC6A4 and TPH2 methylation as potential biomarkers to inform antidepressant treatment choices

Silvia Elisabetta Portis Bruzzone, Brice Ozenne, Patrick MacDonald Fisher, Gabriela Ortega, Gitte Moos Knudsen, Klaus Peter Lesch, Vibe Gedsoe Frokjaer

FENS Forum 2024

ePoster

Visual loom features drive shifts in behavioral choices and internal states in larval zebrafish

Leandro Scholz, Manxiu Ma, Sarah J. Stednitz, Conrad C.Y. Lee, Gilles C. Vanwalleghem, Ethan K. Scott

FENS Forum 2024