← Back

Classification Performance

Topic spotlight
TopicWorld Wide

classification performance

Discover seminars, jobs, and research tagged with classification performance across World Wide.
5 curated items5 Seminars
Updated 6 months ago
5 items · classification performance
5 results
SeminarNeuroscience

From Spiking Predictive Coding to Learning Abstract Object Representation

Prof. Jochen Triesch
Frankfurt Institute for Advanced Studies
Jun 11, 2025

In a first part of the talk, I will present Predictive Coding Light (PCL), a novel unsupervised learning architecture for spiking neural networks. In contrast to conventional predictive coding approaches, which only transmit prediction errors to higher processing stages, PCL learns inhibitory lateral and top-down connectivity to suppress the most predictable spikes and passes a compressed representation of the input to higher processing stages. We show that PCL reproduces a range of biological findings and exhibits a favorable tradeoff between energy consumption and downstream classification performance on challenging benchmarks. A second part of the talk will feature our lab’s efforts to explain how infants and toddlers might learn abstract object representations without supervision. I will present deep learning models that exploit the temporal and multimodal structure of their sensory inputs to learn representations of individual objects, object categories, or abstract super-categories such as „kitchen object“ in a fully unsupervised fashion. These models offer a parsimonious account of how abstract semantic knowledge may be rooted in children's embodied first-person experiences.

SeminarNeuroscienceRecording

Connecting performance benefits on visual tasks to neural mechanisms using convolutional neural networks

Grace Lindsay
New York University (NYU)
Dec 6, 2022

Behavioral studies have demonstrated that certain task features reliably enhance classification performance for challenging visual stimuli. These include extended image presentation time and the valid cueing of attention. Here, I will show how convolutional neural networks can be used as a model of the visual system that connects neural activity changes with such performance changes. Specifically, I will discuss how different anatomical forms of recurrence can account for better classification of noisy and degraded images with extended processing time. I will then show how experimentally-observed neural activity changes associated with feature attention lead to observed performance changes on detection tasks. I will also discuss the implications these results have for how we identify the neural mechanisms and architectures important for behavior.

SeminarNeuroscience

Adaptive neural network classifier for decoding finger movements

Alexey Zabolotniy
HSE University
Jun 1, 2022

While non-invasive Brain-to-Computer interface can accurately classify the lateralization of hand moments, the distinction of fingers activation in the same hand is limited by their local and overlapping representation in the motor cortex. In particular, the low signal-to-noise ratio restrains the opportunity to identify meaningful patterns in a supervised fashion. Here we combined Magnetoencephalography (MEG) recordings with advanced decoding strategy to classify finger movements at single trial level. We recorded eight subjects performing a serial reaction time task, where they pressed four buttons with left and right index and middle fingers. We evaluated the classification performance of hand and finger movements with increasingly complex approaches: supervised common spatial patterns and logistic regression (CSP + LR) and unsupervised linear finite convolutional neural network (LF-CNN). The right vs left fingers classification performance was accurate above 90% for all methods. However, the classification of the single finger provided the following accuracy: CSP+SVM : – 68 ± 7%, LF-CNN : 71 ± 10%. CNN methods allowed the inspection of spatial and spectral patterns, which reflected activity in the motor cortex in the theta and alpha ranges. Thus, we have shown that the use of CNN in decoding MEG single trials with low signal to noise ratio is a promising approach that, in turn, could be extended to a manifold of problems in clinical and cognitive neuroscience.

SeminarNeuroscienceRecording

Efficient GPU training of SNNs using approximate RTRL

James Knight
University of Sussex
Nov 2, 2021

Last year’s SNUFA workshop report concluded “Moving toward neuron numbers comparable with biology and applying these networks to real-world data-sets will require the development of novel algorithms, software libraries, and dedicated hardware accelerators that perform well with the specifics of spiking neural networks” [1]. Taking inspiration from machine learning libraries — where techniques such as parallel batch training minimise latency and maximise GPU occupancy — as well as our previous research on efficiently simulating SNNs on GPUs for computational neuroscience [2,3], we are extending our GeNN SNN simulator to pursue this vision. To explore GeNN’s potential, we use the eProp learning rule [4] — which approximates RTRL — to train SNN classifiers on the Spiking Heidelberg Digits and the Spiking Sequential MNIST datasets. We find that the performance of these classifiers is comparable to those trained using BPTT [5] and verify that the theoretical advantages of neuron models with adaptation dynamics [5] translate to improved classification performance. We then measured execution times and found that training an SNN classifier using GeNN and eProp becomes faster than SpyTorch and BPTT after less than 685 timesteps and much larger models can be trained on the same GPU when using GeNN. Furthermore, we demonstrate that our implementation of parallel batch training improves training performance by over 4⨉ and enables near-perfect scaling across multiple GPUs. Finally, we show that performing inference using a recurrent SNN using GeNN uses less energy and has lower latency than a comparable LSTM simulated with TensorFlow [6].