Collective Motion
collective motion
Metachronal waves in swarms of nematode Turbatrix aceti
There is a recent surge of interest in the behavior of active particles that can at the same time align their direction of movement and synchronize their oscillations, known as swarmalators. While analytical and numerical models of such systems are now abundant, no real-life examples have been shown to date. I will present an experimental investigation of the collective motion of the nematode Turbatrix aceti, which self-propel by body undulation. I will show that under favorable conditions these nematodes can synchronize their body oscillations, forming striking traveling metachronal waves which, similar to the case of beating cilia, produce strong fluid flows. I will demonstrate that the location and strength of this collective state can be controlled through the shape of the confining structure; in our case the contact angle of a droplet. This opens a way for producing controlled work such as on-demand flows or displacement of objects. I will illustrate this by a practical example: showing that the force generated by the collectively moving nematodes is sufficient to change the mode of evaporation of fluid droplets, by counteracting the surface-tension force, which allow us to estimate its strength.
Flocking through complex environments
The spontaneous collective motion of self-propelled agents is ubiquitous in the natural world, and it often occurs in complex environments, be it bacteria and cells migrating through polymeric extracellular matrix or animal herds and human crowds navigating structured terrains. Much is known about flocking dynamics in pristine backgrounds, but how do spatio-temporal heterogeneities in the environment impact such collective self-organization? I will present two model systems, a colloidal active fluid negotiating disordered obstacles and a confined dense bacterial suspension in a viscoelastic medium, as controllable platforms to explore this question and highlight general mechanisms for active self-organization in complex environments. By combining theory and experiment, I will show how flocks on disordered substrates organize into a novel dynamic vortex glass phase, akin to vortex glasses in dirty superconductors, while the presence of viscoelasticity can calm the otherwise turbulent swarming of bacteria, allowing the emergence of a large scale coherent and even oscillatory vortex when confined on the millimetre scale.
Trapping active particles up to the limiting case: bacteria enclosed in a biofilm
Active matter systems are composed of constituents, each one in nonequilibrium, that consume energy in order to move [1]. A characteristic feature of active matter is collective motion leading to nonequilibrium phase transitions or large scale directed motion [2]. A number of recent works have featured active particles interacting with obstacles, either moving or fixed [3,4,5]. When an active particle encounters an asymmetric obstacle, different behaviours are detected depending on the nature of its active motion. On the one side, rectification effects arise in a suspension of run-and-tumble particles interacting with a wall of funnelled-shaped openings, caused by particles persistence length [6]. The same trapping mechanism could be responsible for the intake of microorganisms in the underground leaves [7] of Carnivorous plants [8]. On the other side, for aligning particles [9] interacting with a wall of funnelled-shaped openings, trapping happens on the (opposite) wider opening side of the funnels [10,11]. Interestingly, when funnels are located on a circular array, trapping is more localised and depends on the nature of the Vicsek model. Active particles can be synthetic (such as synthetic active colloids) or alive (such as living bacteria). A prototypical model to study living microswimmers is P. fluorescens, a rod shaped and biofilm forming bacterium. Biofilms are microbial communities self-assembled onto external interfaces. Biofilms can be described within the Soft Matter physics framework [12] as a viscoelastic material consisting of colloids (bacterial cells) embedded in a cross-linked polymer gel (polysaccharides cross-linked via proteins/multivalent cations), whose water content vary depending on the environmental conditions. Bacteria embedded in the polymeric matrix control biofilm structure and mechanical properties by regulating its matrix composition. We have recently monitored structural features of Pseudomonas fluorescens biofilms grown with and without hydrodynamic stress [13,14]. We have demonstrated that bacteria are capable of self-adapting to hostile hydrodynamic stress by tailoring the biofilm chemical composition, thus affecting both the mesoscale structure of the matrix and its viscoelastic properties that ultimately regulate the bacteria-polymer interactions. REFERENCES [1] C. Bechinger et al. Rev. Mod. Phys. 88, 045006 (2016); [2] T. Vicsek, A. Zafeiris Phys. Rep. 517, 71 (2012); [3] C. Bechinger, R. Di Leonardo, H. Lowen, C. Reichhardt, G. Volpe, and G. Volpe, Reviews of Modern Physics 88, 045006 (2016); [4] R Martinez, F Alarcon, DR Rodriguez, JL Aragones, C Valeriani The European Physical Journal E 41, 1 (2018); [5] DR Rodriguez, F Alarcon, R Martinez, J Ramírez, C Valeriani, Soft matter 16 (5), 1162 (2020); [6] C. O. Reichhardt and C. Reichhardt, Annual Review of Condensed Matter Physics 8, 51 (2017); [7] W Barthlott, S Porembski, E Fischer, B Gemmel Nature 392, 447 (1998); [8] C B. Giuliano, R Zhang, R.Martinez Fernandez, C.Valeriani and L.Wilson (in preparation, 2021); [9] R Martinez, F Alarcon, JL Aragones, C Valeriani Soft matter 16 (20), 4739 (2020); [10] P. Galajada, J. Keymer, P. Chaikin and R.Austin, Journal of bacteriology, 189, 8704 (2007); [11] M. Wan, C.O. Reichhardt, Z. Nussinov, and C. Reichhardt, Physical Review Letters 101, 018102 (2008); [12] J N. Wilking , T E. Angelini , A Seminara , M P. Brenner , and D A. Weitz MRS Bulletin 36, 385 (2011); [13]J Jara, F Alarcón, A K Monnappa, J Ignacio Santos, V Bianco, P Nie, M Pica Ciamarra, A Canales, L Dinis, I López-Montero, C Valeriani, B Orgaz, Frontiers in microbiology 11, 3460 (2021); [14] P Nie, F Alarcon, I López-Montero, B Orgaz, C Valeriani, M Pica Ciamarra
Three levels of variability in the collective behavior of locusts
Many aspects of collective behavior depend on interactions between conspecifics. This is especially true for the collective motion of locusts, which swarm in millions while maintaining synchrony among individuals. However, whether locusts share and maintain the same socio-behavioral patterns – between groups, individuals and situations – remains an open question. Studying marching locusts under lab conditions, we found that (1) different groups behave differently; (2) locusts within a group homogenize their behavior; and (3) individuals have different socio-behavioral tendencies and context-dependent states. These variability levels suggest that behavioral differences within and among individuals exist, affect others, and shape the collective behavior of the entire group.
Spontaneous and driven active matter flows
Understanding individual and macroscopic transport properties of motile micro-organisms in complex environments is a timely question, relevant to many ecological, medical and technological situations. At the fundamental level, this question is also receiving a lot of attention as fluids loaded with swimming micro-organisms has become a rich domain of applications and a conceptual playground for the statistical physics of “active matter”. The existence of microscopic sources of energy borne by the motile character of these micro-swimmers is driving self-organization processes at the origin of original emergent phases and unconventional macroscopic properties leading to revisit many standard concepts in the physics of suspensions. In this presentation, I will report on a recent exploration on the question of spontaneous formation of large scale collective motion in relation with the rheological response of active suspensions. I will also present new experiments showing how the motility of bacteria can be controlled such as to extract work macroscopically.