← Back

Compulsivity

Topic spotlight
TopicWorld Wide

compulsivity

Discover seminars, jobs, and research tagged with compulsivity across World Wide.
5 curated items4 Seminars1 Position
Updated 3 days ago
5 items · compulsivity
5 results
PositionComputational Neuroscience

Dr. Jorge Mejias

University of Amsterdam
Amsterdam, the Netherlands
Dec 5, 2025

The Computational Neuroscience Lab, recently established within the Cognitive and Systems Neuroscience Group at the University of Amsterdam (UvA), is seeking a highly qualified and motivated candidate for a postdoctoral position in computational neuroscience, under the project 'Translational biomarkers for compulsivity across large-scale brain networks'. The aim of this project is to understand the neurobiological roots of compulsivity, by identifying the neural signatures of compulsive behavior in cortical and subcortical brain regions. A combination of experimental and computational work will be used, with the presently advertised position being associated with the computational modeling part. You will develop and analyze computational models of large-scale brain networks of rodents and humans, following previous work in macaques (Mejias et al., Science Advances 2016). These new models will explicitly replicate neural dynamics underlying compulsive behavior, and will be constrained by existing anatomical, electrophysiological and clinical data from the experimental partners of the project. You will be supervised by Dr. Jorge Mejias, head of the Computational Neuroscience Lab, and the work will be carried out in close collaboration with Drs. Ingo Willuhn and Tara Arbab, from the Netherlands Institute for Neuroscience. You will also closely collaborate with other computational neuroscientists, experimental neuroscientists, clinicians, theoreticians, and machine learning experts at the UvA. You are expected: -to perform research on computational neuroscience;-to review relevant literature and acquire knowledge on neurobiology, compulsivity and computational neuroscience; -to build biologically realistic multi-area computational models of cortical circuits, and compare their predictions with experimental findings; -to collaborate and discuss regularly with other researchers in the project; -to take part in teaching efforts of the Computational Neuroscience Lab, including supervision of bachelor and Master students; -to write scientific manuscripts and present your results at meetings and conferences. Our offer: A temporary contract for 38 hours a week, preferably starting on 1 November 2021. The duration of the contract is 18 months (with a two months probation period). An extension of the contract is possible provided a positive performance of the candidate and further availability of funds. The salary, depending on relevant work experience before the beginning of the employment contract, will be €2,836 to €4,474 (scale 10) gross per month, based on a full-time contract (38 hours a week). This is exclusive 8% holiday allowance and 8.3% end-of-year bonus. A favorable tax agreement, the ‘30% ruling’, may apply to non-Dutch applicants. The Collective Labor Agreement of Dutch Universities is applicable.

SeminarNeuroscienceRecording

Integrative Neuromodulation: from biomarker identification to optimizing neuromodulation

Valerie Voon
Department of Psychiatry, University of Cambridge
Mar 6, 2023

Why do we make decisions impulsively blinded in an emotionally rash moment? Or caught in the same repetitive suboptimal loop, avoiding fears or rushing headlong towards illusory rewards? These cognitive constructs underlying self-control and compulsive behaviours and their influence by emotion or incentives are relevant dimensionally across healthy individuals and hijacked across disorders of addiction, compulsivity and mood. My lab focuses on identifying theory-driven modifiable biomarkers focusing on these cognitive constructs with the ultimate goal to optimize and develop novel means of neuromodulation. Here I will provide a few examples of my group’s recent work to illustrate this approach. I describe a series of recent studies on intracranial physiology and acute stimulation focusing on risk taking and emotional processing. This talk highlights the subthalamic nucleus, a common target for deep brain stimulation for Parkinson’s disease and obsessive-compulsive disorder. I further describe recent translational work in non-invasive neuromodulation. Together these examples illustrate the approach of the lab highlighting modifiable biomarkers and optimizing neuromodulation.

SeminarNeuroscience

Stress deceleration theory: chronic adolescent stress exposure results in decelerated neurobehavioral maturation

Kshitij Jadhav
University of Cambridge
Jan 18, 2022

Normative development in adolescence indicates that the prefrontal cortex is still under development thereby unable to exert efficient top-down inhibitory control on subcortical regions such as the basolateral amygdala and the nucleus accumbens. This imbalance in the developmental trajectory between cortical and subcortical regions is implicated in expression of the prototypical impulsive, compulsive, reward seeking and risk-taking adolescent behavior. Here we demonstrate that a chronic mild unpredictable stress procedure during adolescence in male Wistar rats arrests the normal behavioral maturation such that they continue to express adolescent-like impulsive, hyperactive, and compulsive behaviors into late adulthood. This arrest in behavioral maturation is associated with the hypoexcitability of prelimbic cortex (PLC) pyramidal neurons and reduced PLC-mediated synaptic glutamatergic control of BLA and nucleus accumbens core (NAcC) neurons that lasts late into adulthood. At the same time stress exposure in adolescence results in the hyperexcitability of the BLA pyramidal neurons sending stronger glutamatergic projections to the NAcC. Chemogenetic reversal of the PLC hypoexcitability decreased compulsivity and improved the expression of goal-directed behavior in rats exposed to stress during adolescence, suggesting a causal role for PLC hypoexcitability in this stress-induced arrested behavioral development. (https://www.biorxiv.org/content/10.1101/2021.11.21.469381v1.abstract)

SeminarNeuroscienceRecording

Computational Models of Compulsivity

Frederike Petzschner
Brown University
Nov 10, 2021
SeminarNeuroscience

Delineating Reward/Avoidance Decision Process in the Impulsive-compulsive Spectrum Disorders through a Probabilistic Reversal Learning Task

Xiaoliu Zhang
Monash University
Jul 18, 2020

Impulsivity and compulsivity are behavioural traits that underlie many aspects of decision-making and form the characteristic symptoms of Obsessive Compulsive Disorder (OCD) and Gambling Disorder (GD). The neural underpinnings of aspects of reward and avoidance learning under the expression of these traits and symptoms are only partially understood. " "The present study combined behavioural modelling and neuroimaging technique to examine brain activity associated with critical phases of reward and loss processing in OCD and GD. " "Forty-two healthy controls (HC), forty OCD and twenty-three GD participants were recruited in our study to complete a two-session reinforcement learning (RL) task featuring a “probability switch (PS)” with imaging scanning. Finally, 39 HC (20F/19M, 34 yrs +/- 9.47), 28 OCD (14F/14M, 32.11 yrs ±9.53) and 16 GD (4F/12M, 35.53yrs ± 12.20) were included with both behavioural and imaging data available. The functional imaging was conducted by using 3.0-T SIEMENS MAGNETOM Skyra syngo MR D13C at Monash Biomedical Imaging. Each volume compromised 34 coronal slices of 3 mm thickness with 2000 ms TR and 30 ms TE. A total of 479 volumes were acquired for each participant in each session in an interleaved-ascending manner. " " The standard Q-learning model was fitted to the observed behavioural data and the Bayesian model was used for the parameter estimation. Imaging analysis was conducted using SPM12 (Welcome Department of Imaging Neuroscience, London, United Kingdom) in the Matlab (R2015b) environment. The pre-processing commenced with the slice timing, realignment, normalization to MNI space according to T1-weighted image and smoothing with a 8 mm Gaussian kernel. " " The frontostriatal brain circuit including the putamen and medial orbitofrontal (mOFC) were significantly more active in response to receiving reward and avoiding punishment compared to receiving an aversive outcome and missing reward at 0.001 with FWE correction at cluster level; While the right insula showed greater activation in response to missing rewards and receiving punishment. Compared to healthy participants, GD patients showed significantly lower activation in the left superior frontal and posterior cingulum at 0.001 for the gain omission. " " The reward prediction error (PE) signal was found positively correlated with the activation at several clusters expanding across cortical and subcortical region including the striatum, cingulate, bilateral insula, thalamus and superior frontal at 0.001 with FWE correction at cluster level. The GD patients showed a trend of decreased reward PE response in the right precentral extending to left posterior cingulate compared to controls at 0.05 with FWE correction. " " The aversive PE signal was negatively correlated with brain activity in regions including bilateral thalamus, hippocampus, insula and striatum at 0.001 with FWE correction. Compared with the control group, GD group showed an increased aversive PE activation in the cluster encompassing right thalamus and right hippocampus, and also the right middle frontal extending to the right anterior cingulum at 0.005 with FWE correction. " " Through the reversal learning task, the study provided a further support of the dissociable brain circuits for distinct phases of reward and avoidance learning. Also, the OCD and GD is characterised by aberrant patterns of reward and avoidance processing.