← Back

Conscious Percept

Topic spotlight
TopicWorld Wide

conscious percept

Discover seminars, jobs, and research tagged with conscious percept across World Wide.
11 curated items11 Seminars
Updated 7 months ago
11 items · conscious percept
11 results
SeminarNeuroscience

Single-neuron correlates of perception and memory in the human medial temporal lobe

Prof. Dr. Dr. Florian Mormann
University of Bonn, Germany
May 13, 2025

The human medial temporal lobe contains neurons that respond selectively to the semantic contents of a presented stimulus. These "concept cells" may respond to very different pictures of a given person and even to their written or spoken name. Their response latency is far longer than necessary for object recognition, they follow subjective, conscious perception, and they are found in brain regions that are crucial for declarative memory formation. It has thus been hypothesized that they may represent the semantic "building blocks" of episodic memories. In this talk I will present data from single unit recordings in the hippocampus, entorhinal cortex, parahippocampal cortex, and amygdala during paradigms involving object recognition and conscious perception as well as encoding of episodic memories in order to characterize the role of concept cells in these cognitive functions.

SeminarPsychology

Deepfake emotional expressions trigger the uncanny valley brain response, even when they are not recognised as fake

Casey Becker
University of Pittsburgh
Apr 15, 2025

Facial expressions are inherently dynamic, and our visual system is sensitive to subtle changes in their temporal sequence. However, researchers often use dynamic morphs of photographs—simplified, linear representations of motion—to study the neural correlates of dynamic face perception. To explore the brain's sensitivity to natural facial motion, we constructed a novel dynamic face database using generative neural networks, trained on a verified set of video-recorded emotional expressions. The resulting deepfakes, consciously indistinguishable from videos, enabled us to separate biological motion from photorealistic form. Results showed that conventional dynamic morphs elicit distinct responses in the brain compared to videos and photos, suggesting they violate expectations (n400) and have reduced social salience (late positive potential). This suggests that dynamic morphs misrepresent facial dynamism, resulting in misleading insights about the neural and behavioural correlates of face perception. Deepfakes and videos elicited largely similar neural responses, suggesting they could be used as a proxy for real faces in vision research, where video recordings cannot be experimentally manipulated. And yet, despite being consciously undetectable as fake, deepfakes elicited an expectation violation response in the brain. This points to a neural sensitivity to naturalistic facial motion, beyond conscious awareness. Despite some differences in neural responses, the realism and manipulability of deepfakes make them a valuable asset for research where videos are unfeasible. Using these stimuli, we proposed a novel marker for the conscious perception of naturalistic facial motion – Frontal delta activity – which was elevated for videos and deepfakes, but not for photos or dynamic morphs.

SeminarPsychology

Disentangling neural correlates of consciousness and task relevance using EEG and fMRI

Torge Dellert
Westfälischen Wilhelms-Universität (WWU) Münster
Oct 11, 2022

How does our brain generate consciousness, that is, the subjective experience of what it is like to see face or hear a sound? Do we become aware of a stimulus during early sensory processing or only later when information is shared in a wide-spread fronto-parietal network? Neural correlates of consciousness are typically identified by comparing brain activity when a constant stimulus (e.g., a face) is perceived versus not perceived. However, in most previous experiments, conscious perception was systematically confounded with post-perceptual processes such as decision-making and report. In this talk, I will present recent EEG and fMRI studies dissociating neural correlates of consciousness and task-related processing in visual and auditory perception. Our results suggest that consciousness emerges during early sensory processing, while late, fronto-parietal activity is associated with post-perceptual processes rather than awareness. These findings challenge predominant theories of consciousness and highlight the importance of considering task relevance as a confound across different neuroscientific methods, experimental paradigms and sensory modalities.

SeminarNeuroscienceRecording

The attentional requirement of unconscious processing

Shao-Min (Sean) Hung
California Institute of Technology
Oct 27, 2021

The tight relationship between attention and conscious perception has been extensively researched in the past decades. However, whether attentional modulation extended to unconscious processes remained largely unknown, particularly when it came to abstract and high-level processing. I will talk about a recent study where we utilized the Stroop paradigm to show that task load gates unconscious semantic processing. In a series of psychophysical experiments, the unconscious word semantics influenced conscious task performance only under the low task load condition, but not the high task load condition. Intriguingly, with enough practice in the high task load condition, the unconscious effect reemerged. These findings suggest a competition of attentional resources between unconscious and conscious processes, challenging the automaticity account of unconscious processing.

SeminarNeuroscienceRecording

Interactions between visual cortical neurons that give rise to conscious perception

Pieter Roelfsema
Netherlands Institute for Neuroscience
Oct 24, 2021

I will discuss the mechanisms that determine whether a weak visual stimulus will reach consciousness or not. If the stimulus is simple, early visual cortex acts as a relay station that sends the information to higher visual areas. If the stimulus arrives at a minimal strength, it will be stored in working memory and can be reported. However, during more complex visual perceptions, which for example depend on the segregation of a figure from the background, early visual cortex’ role goes beyond a simply relay. It now acts as a cognitive blackboard and conscious perception depends on it. Our results inspire new approaches to create a visual prosthesis for the blind, by creating a direct interface with the visual brain. I will discuss how high-channel-number interfaces with the visual cortex might be used to restore a rudimentary form of vision in blind individuals.

SeminarNeuroscience

Neuronal correlates of conscious perception - an evolutionary perspective

Andreas Nieder
University of Tübingen
May 2, 2021
SeminarNeuroscienceRecording

Towards a Translational Neuroscience of Consciousness

Hakwan Lau
UCLA Psychology Department
Mar 24, 2021

The cognitive neuroscience of conscious perception has seen considerable growth over the past few decades. Confirming an influential hypothesis driven by earlier studies of neuropsychological patients, we have found that the lateral and polar prefrontal cortices play important causal roles in the generation of subjective experiences. However, this basic empirical finding has been hotly contested by researchers with different theoretical commitments, and the differences are at times difficult to resolve. To address the controversies, I suggest one alternative venue may be to look for clinical applications derived from current theories. I outline an example in which we used closed-loop fMRI combined with machine learning to nonconsciously manipulate the physiological responses to threatening stimuli, such as spiders or snakes. A clinical trial involving patients with phobia is currently taking place. I also outline how this theoretical framework may be extended to other diseases. Ultimately, a truly meaningful understanding of the fundamental nature of our mental existence should lead to useful insights for our colleagues on the clinical frontlines. If we use this as a yardstick, whoever loses the esoteric theoretical debates, both science and the patients will always win.

SeminarNeuroscienceRecording

Interactions between neurons during visual perception and restoring them in blindness

Pieter Roelfsema
Netherlands Institute for Neuroscience
Mar 8, 2021

I will discuss the mechanisms that determine whether a weak visual stimulus will reach consciousness or not. If the stimulus is simple, early visual cortex acts as a relay station that sends the information to higher visual areas. If the stimulus arrives at a minimal strength, it will be stored in working memory. However, during more complex visual perceptions, which for example depend on the segregation of a figure from the background, early visual cortex’ role goes beyond a simply relay. It now acts as a cognitive blackboard and conscious perception depends on it. Our results also inspire new approaches to create a visual prosthesis for the blind, by creating a direct interface with the visual cortex. I will discuss how high-channel-number interfaces with the visual cortex might be used to restore a rudimentary form of vision in blind individuals.

SeminarNeuroscienceRecording

A no-report paradigm reveals that face cells multiplex consciously perceived and suppressed stimuli

Janis Hesse
California Institute of Technology
Feb 25, 2021

Having conscious experience is arguably the most important reason why it matters to us whether we are alive or dead. A powerful paradigm to identify neural correlates of consciousness is binocular rivalry, wherein a constant visual stimulus evokes a varying conscious percept. It has recently been suggested that activity modulations observed during rivalry may represent the act of report rather than the conscious percept itself. Here, we performed single-unit recordings from face patches in macaque inferotemporal (IT) cortex using a novel no-report paradigm in which the animal’s conscious percept was inferred from eye movements. These experiments reveal two new results concerning the neural correlates of consciousness. First, we found that high proportions of IT neurons represented the conscious percept even without active report. Using high-channel recordings, including a new 128-channel Neuropixels-like probe, we were able to decode the conscious percept on single trials. Second, we found that even on single trials, modulation to rivalrous stimuli was weaker than that to unambiguous stimuli, suggesting that cells may encode not only the conscious percept but also the suppressed stimulus. To test this hypothesis, we varied the identity of the suppressed stimulus during binocular rivalry; we found that indeed, we could decode not only the conscious percept but also the suppressed stimulus from neural activity. Moreover, the same cells that were strongly modulated by the conscious percept also tended to be strongly modulated by the suppressed stimulus. Together, our findings indicate that (1) IT cortex possesses a true neural correlate of consciousness even in the absence of report, and (2) this correlate consists of a population code wherein single cells multiplex representation of the conscious percept and veridical physical stimulus, rather than a subset of cells perfectly reflecting consciousness.

SeminarNeuroscience

Assessing consciousness in human infants

Ghislaine Dehaene-Lambertz
CNRS
Jan 24, 2021

In a few months, human infants develop complex capacities in numerous cognitive domains. They learn their native language, recognize their parents, refine their numerical capacities and their perception of the world around them but are they conscious and how can we study consciousness when no verbal report is possible? One way to approach this question is to rely on the neural responses correlated with conscious perception in adults (i.e. a global increase of activity in notably frontal regions with top-down amplification of the sensory levels). We can thus study at what age the developing anatomical architecture might be mature enough to allow this type of responses, but moreover we can use similar experimental paradigms than in adults in which we expect to observe a similar pattern of functional responses.

SeminarNeuroscience

Cellular mechanisms of conscious perception

Matthew Larkum
Humboldt University, Berlin, Germany
Jan 12, 2021

Arguably one of the biggest mysteries in neuroscience is how the brain stores long-term memories. The major challenge for investigating the neural circuit underlying memory formation in the neocortex is the distributed nature of the resulting memory trace throughout the cortex. Here, we used a new behavioral paradigm that enabled us to generate memory traces in a specific cortical location and to specifically examine the mechanisms of memory formation in that region. We found that medial-temporal inputs arrive in neocortical layer 1 where the apical dendrites of cortical pyramidal neurons predominate. These dendrites have active properties that make them sensitive to contextual inputs from other areas that also send axons to layer 1 around the cortex. Blocking the influence of these medial-temporal inputs prevented learning and suppressed resulting dendritic activity. We conclude that layer 1 is the locus for hippocampal-dependent memory formation in the neocortex and propose that this process enhances the sensitivity of the tuft dendrites to contextual inputs.